ﻻ يوجد ملخص باللغة العربية
We have measured the rf magnetoconductivity of unidirectional lateral superlattices (ULSLs) by detecting the attenuation of microwave through a coplanar waveguide placed on the surface. ULSL samples with the principal axis of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave electric field are examined. For low microwave power, we observe expected anisotropic behavior of the commensurability oscillations (CO), with CO in samples S_perp and S_|| dominated by the diffusion and the collisional contributions, respectively. Amplitude modulation of the Shubnikov-de Haas oscillations is observed to be more prominent in sample S_||. The difference between the two samples is washed out with the increase of the microwave power, letting the diffusion contribution govern the CO in both samples. The failure of the intended directional selectivity in the conductivity measured with high microwave power is interpreted in terms of large-angle electron-phonon scattering.
We have observed commensurability oscillations (CO) in the Hall resistance $R_{yx}$ of a unidirectional lateral superlattice (ULSL). The CO, having small amplitudes ($sim$ 1 $Omega$) and being superposed on a roughly three-orders of magnitude larger
We report the experimental observation of commensurability oscillations (COs) in 1D graphene superlattices. The widely tunable periodic potential modulation in hBN encapsulated graphene is generated via the interplay of nanopatterned few layer graphe
Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in $mathrm{Ga[Al]As}$ heterostructures. The two-dimensional electron gases exposed to these superlattices are characte
We measure graphene coplanar waveguides from direct current (DC) to 13.5GHz and show that the apparent resistance (in the presence of parasitic impedances) has an quadratic frequency dependence, but the intrinsic conductivity (without the influence o
We present fully quantum-mechanical magnetotransport calculations for short-period lateral superlattices with one-dimensional electrostatic modulation. A non-perturbative treatment of both magnetic field and modulation potential proves to be necessar