ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrostatic and chemical pressure tuning of CeFeAs_1-xP_xO single crystals

143   0   0.0 ( 0 )
 نشر من قبل Michael Nicklas
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out a combined P-substitution and hydrostatic pressure study on CeFeAs_1-xP_xO single crystals in order to investigate the peculiar relationship of the local moment magnetism of Ce, the ordering of itinerant Fe moments, and their connection with the occurrence of superconductivity. Our results evidence a close relationship between the weakening of Fe magnetism and the change from antiferromagnetic to ferromagnetic ordering of Ce moments at p*=1.95 GPa in CeFeAs_0.78P_0.22O. The absence of superconductivity in CeFeAs_0.78P_0.22O and the presence of a narrow and strongly pressure sensitive superconducting phase in CeFeAs_0.70P_0.30O and CeFeAs_0.65P_0.35O indicate the detrimental effect of the Ce magnetism on superconductivity in P-substituted CeFeAsO.



قيم البحث

اقرأ أيضاً

We report high pressure magnetic susceptibility and electrical resistivity measurements on Ca_{3}Ir_{4}Sn_{13} single crystals up to 60 kbar. These measurements allow us to follow the evolution of the superconducting critical temperature T_c, the res istivity anomaly temperature T*, the superconducting coherence length and the Fermi velocity under pressure. The pressure-temperature phase diagram constructed for Ca_{3}Ir_{4}Sn_{13} shows a dome-shaped pressure dependence of T_c. The initial rise in T_c, which is accompanied by a decrease in T*, is consistent with a reduction in the partial gapping of the Fermi surface under pressure.
We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivi ty (rho) in the 1.8 - 300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe2As2 and BaFe2As2 (lightly doped with Sn) display structural phase transitions near 170 K and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba0.55K0.45)Fe2As2 is superconducting for T < 30 K. The effect of pressure on BaFe2As2 is to shift the onset of the crystallographic transformation down in temperature at the rate of about -1.04 K/kbar, while shifting the whole rho(T) curves downward, whereas its effect on superconducting (Ba0.55K0.45)Fe2As2 is to shift the onset of superconductivity to lower temperatures at the rate of about -0.21 K/kbar. The effect of pressure on CaFe2As2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P < 5 kbar. However, higher pressures bring about another phase transformation characterized by reduced resistivity, and the suppression of superconductivity, confining superconductivity to a narrow pressure dome centered near 5 kbar. Upper critical field (Hc2) data in (Ba0.55K0.45)Fe2As2 and CaFe2As2 are discussed.
We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon medium up to 14 GPa and we find that TC increases up to 33-36 K in all samples, but with slightly different pressure dependences on different samples. Above 12 GPa no traces of superconductivity are found in any sample. We have also performed a room temperature high pressure X-ray diffraction study up to 12 GPa on a powder sample, and we find that between 8.5 GPa and 12 GPa, the tetragonal PbO structure undergoes a structural transition to a hexagonal structure. This transition results in a volume decrease of about 16%, and is accompanied by the appearance of an intermediate, probably orthorhombic phase.
The effects of pressure generated in a liquid medium, clamp, pressure cell on the in-plane and c-axis resistance, temperature-dependent Hall coefficient and low temperature, magnetoresistance in CaFe2As2 are presented. The T - P phase diagram, includ ing the observation of a complete superconducting transition in resistivity, delineated in earlier studies is found to be highly reproducible. The Hall resistivity and low temperature magnetoresistance are sensitive to different states/phases observed in CaFe2As2. Auxiliary measurements under uniaxial, c-axis, pressure are in general agreement with the liquid medium clamp cell results with some difference in critical pressure values and pressure derivatives. The data may be viewed as supporting the potential importance of non-hydrostatic components of pressure in inducing superconductivity in CaFe2As2.
We report on the crystal growth and characterization of ABi3 (A=Ba,Sr) superconductors. Single crystals of both compounds were grown by the self-flux technique. BaBi3 crystallized in a tetragonal structure with space group P4/mmm and SrBi3 in a cubic structure with space group Pm-3m. Superconductivity at Tc = 6.0 K for BaBi3 and Tc = 5.6 K for SrBi3 have been confirmed through dc magnetic susceptibility and electrical transport measurements. The dc magnetic susceptibility under hydrostatic pressure shows a positive pressure coefficient of dTc/dP = 1.22 K/GPa for BaBi3 and a negative pressure coefficient of dTc/dP = -0.48 K/GPa for SrBi3. The normal state electrical resistivity shows that both compounds are highly metallic in nature. The upper critical fields Hc2 evaluated by resistivity under magnetic fields $rho(T,H)$ are 22 kOe for BaBi3 and 2.9 kOe for SrBi3. A specific heat jump of $Delta Ce/gamma Tc = 1.05$ suggests weak coupling superconductivity in BaBi3, whereas $Delta Ce/gamma Tc = 2.08$ for SrBi3 is higher than the BCS theory value of 1.43, indicating a strong coupling superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا