ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

253   0   0.0 ( 0 )
 نشر من قبل Adam Micolich
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPCs confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.



قيم البحث

اقرأ أيضاً

We observe a strong dependence of the exciton spin relaxation in CdTe quantum dots on the average dot size and the depth of the confining potential. For the excitons confined to the as-grown CdTe quantum dots we find the spin relaxation time to be 4. 8 ns. After rapid thermal annealing, which increases the average dot size and leads to weaker confinement, we measure the spin relaxation tine to be 1.5 ns, resulting in smaller values of the absolute polarization of the quantum dot emission. This dramatic enhancement of the spin scattering efficiency upon annealing is attributed to increased mixing between different spin states in larger CdTe quantum dots.
The properties of conductance in one-dimensional (1D) quantum wires are statistically investigated using an array of 256 lithographically-identical split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates are measured during a si ngle cooldown under the same conditions. Electron many-body effects give rise to an anomalous feature in the conductance of a one-dimensional quantum wire, known as the `0.7 structure (or `0.7 anomaly). To handle the large data set, a method of automatically estimating the conductance value of the 0.7 structure is developed. Large differences are observed in the strength and value of the 0.7 structure [from $0.63$ to $0.84times (2e^2/h)$], despite the constant temperature and identical device design. Variations in the 1D potential profile are quantified by estimating the curvature of the barrier in the direction of electron transport, following a saddle-point model. The 0.7 structure appears to be highly sensitive to the specific confining potential within individual devices.
Here we review recent progress in cooling micro/nanoelectronic devices significantly below 10 mK. A number of groups worldwide are working to produce sub-millikelvin on-chip electron temperatures, motivated by the possibility of observing new physica l effects and improving the performance of quantum technologies, sensors and metrological standards. The challenge is a longstanding one, with the lowest reported on-chip electron temperature having remained around 4 mK for more than 15 years. This is despite the fact that microkelvin temperatures have been accessible in bulk materials since the mid 20th century. In this review we describe progress made in the last five years using new cooling techniques. Developments have been driven by improvements in the understanding of nanoscale physics, material properties and heat flow in electronic devices at ultralow temperatures, and have involved collaboration between universities and institutes, physicists and engineers. We hope that this review will serve as a summary of the current state-of-the-art, and provide a roadmap for future developments. We focus on techniques that have shown, in experiment, the potential to reach sub-millikelvin electron temperatures. In particular, we focus on on-chip demagnetisation refrigeration. Multiple groups have used this technique to reach temperatures around 1 mK, with a current lowest temperature below 0.5 mK.
We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs/AlGaAs heterostructure, through which the conductance is quantized. The yield of d evices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one dimensional channel (estimated using a saddle point model), and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different length. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the 0.7 anomaly: the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.
Ninety eight one-dimensional channels defined using split gates fabricated on a GaAs/AlGaAs heterostructure are measured during one cooldown at 1.4 K. The devices are arranged in an array on a single chip, and individually addressed using a multiplex ing technique. The anomalous conductance feature known as the 0.7 structure is studied using statistical techniques. The ensemble of data show that the 0.7 anomaly becomes more pronounced and occurs at lower values as the curvature of the potential barrier in the transport direction decreases. This corresponds to an increase in the effective length of the device. The 0.7 anomaly is not strongly influenced by other properties of the conductance related to density. The curvature of the potential barrier appears to be the primary factor governing the shape of the 0.7 structure at a given T and B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا