ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduced Density Matrix Functional Theory at Finite Temperature: Theoretical Foundations

220   0   0.0 ( 0 )
 نشر من قبل Attila Cangi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an ab-initio approach for grand canonical ensembles in thermal equilibrium with local or nonlocal external potentials based on the one-reduced density matrix. We show that equilibrium properties of a grand canonical ensemble are determined uniquely by the eq-1RDM and establish a variational principle for the grand potential with respect to its one-reduced density matrix. We further prove the existence of a Kohn-Sham system capable of reproducing the one-reduced density matrix of an interacting system at finite temperature. Utilizing this Kohn-Sham system as an unperturbed system, we deduce a many-body approach to iteratively construct approximations to the correlation contribution of the grand potential.



قيم البحث

اقرأ أيضاً

Based on our derivation of finite temperature reduced density matrix functional theory and the discussion of the performance of its first-order functional this work presents several different correlation-energy functionals and applies them to the hom ogeneous electron gas. The zero temperature limits of the correlation-energy and the momentum distributions are investigated and the magnetic phase diagrams in collinear spin configuration are discussed.
Using the newly introduced theory of finite-temperature reduced density matrix functional theory, we apply the first-order approximation to the homogeneous electron gas. We consider both collinear spin states as well as symmetry broken states describ ing planar spin spirals and investigate the magnetic phase diagram as well as the temperature-dependence of the single particle spectra.
We present an textit{ab initio} theory for superconductors, based on a unique mapping between the statistical density operator at equilibrium, on the one hand, and the corresponding one-body reduced density matrix $gamma$ and the anomalous density $c hi$, on the other. This new formalism for superconductivity yields the existence of a universal functional $mathfrak{F}_beta[gamma,chi]$ for the superconductor ground state, whose unique properties we derive. We then prove the existence of a Kohn-Sham system at finite temperature and derive the corresponding Bogoliubov-de Gennes-like single particle equations. By adapting the decoupling approximation from density functional theory for superconductors we bring these equations into a computationally feasible form. Finally, we use the existence of the Kohn-Sham system to extend the Sham-Schluter connection and derive a first exchange-correlation functional for our theory. This reduced density matrix functional theory for superconductors has the potential of overcoming some of the shortcomings and fundamental limitations of density functional theory of superconductivity.
In this work, we propose a self-consistent minimization procedure for functionals in reduced density matrix functional theory. We introduce an effective noninteracting system at finite temperature which is capable of reproducing the groundstate one-r educed density matrix of an interacting system at zero temperature. By introducing the concept of a temperature tensor the minimization with respect to the occupation numbers is shown to be greatly improved.
Based on recent progress on fermionic exchange symmetry we propose a way to develop new functionals for reduced density matrix functional theory. For some settings with an odd number of electrons, by assuming saturation of the inequalities stemming f rom the generalized Pauli principle, the many-body wave-function can be written explicitly in terms of the natural occupation numbers and natural orbitals. This leads to an expression for the two-particle density matrix and therefore for the correlation energy functional. This functional was then tested for a three-electron Hubbard model where it showed excellent performance both in the weak and strong correlation regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا