ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct comparison of a Ca+ single ion clock against a Sr optical lattice clock

137   0   0.0 ( 0 )
 نشر من قبل Tetsuya Ido
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical frequency comparison of the 40Ca+ clock transition u_{Ca} (2S1/2-2D5/2, 729nm) against the 87Sr optical lattice clock transition u_{Sr}(1S0-3P0, 698nm) has resulted in a frequency ratio u_{Ca} / u_{Sr} = 0.957 631 202 358 049 9(2 3). The rapid nature of optical comparison allowed the statistical uncertainty of frequency ratio u_{Ca} / u_{Sr} to reach 1x10-15 in only 1000s and yielded a value consistent with that calculated from separate absolute frequency measurements of u_{Ca} using the International Atomic Time (TAI) link. The total uncertainty of the frequency ratio using optical comparison (free from microwave link uncertainties) is smaller than that obtained using absolute frequency measurement, demonstrating the advantage of optical frequency evaluation. We report the absolute frequency of ^{40}Ca+ with a systematic uncertainty 14 times smaller than our previous measurement [1].



قيم البحث

اقرأ أيضاً

Optical atomic clocks promise timekeeping at the highest precision and accuracy, owing to their high operating frequencies. Rigorous evaluations of these clocks require direct comparisons between them. We have realized a high-performance remote compa rison of optical clocks over km-scale urban distances, a key step for development, dissemination, and application of these optical standards. Through this remote comparison and a proper design of lattice-confined neutral atoms for clock operation, we evaluate the uncertainty of a strontium (Sr) optical lattice clock at the 1x10-16 fractional level, surpassing the best current evaluations of cesium (Cs) primary standards. We also report on the observation of density-dependent effects in the spin-polarized fermionic sample and discuss the current limiting effect of blackbody radiation-induced frequency shifts.
We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the st abilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of $2times10^{-17}$ was reached after $10^5$ s of averaging in an interleaved self-comparison of the clock.
93 - Anders Brusch 2005
We report the observation of the higher order frequency shift due to the trapping field in a $^{87}$Sr optical lattice clock. We show that at the magic wavelength of the lattice, where the first order term cancels, the higher order shift will not con stitute a limitation to the fractional accuracy of the clock at a level of $10^{-18}$. This result is achieved by operating the clock at very high trapping intensity up to $400 $kW/cm$^2$ and by a specific study of the effect of the two two-photon transitions near the magic wavelength.
We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent exper imental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
We demonstrate a precision frequency measurement using a phase-stabilized 120-km optical fiber link over a physical distance of 50 km. The transition frequency of the 87Sr optical lattice clock at the University of Tokyo is measured to be 42922800422 9874.1(2.4) Hz referenced to international atomic time (TAI). The measured frequency agrees with results obtained in Boulder and Paris at a 6*10^-16 fractional level, which matches the current best evaluations of Cs primary frequency standards. The results demonstrate the excellent functions of the intercity optical fibre link, and the great potential of optical lattice clocks for use in the redefinition of the second.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا