ﻻ يوجد ملخص باللغة العربية
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperature, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.
To use quantum systems for technological applications we first need to preserve their coherence for macroscopic timescales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum mem
We propose a variational approach for computing the macroscopic entanglement in a many-body mixed state, based on entanglement witness operators, and compute the entanglement of formation (EoF), a mixed-state generalization of the entanglement entrop
The description of an open quantum systems decay almost always requires several approximations as to remain tractable. Here, we first revisit the meaning, domain and seeming contradictions of a few of the most widely used of such approximations: semi
Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system r
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Ma