ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of delayed immune-response in tumor immune-system interplay

131   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2012
والبحث باللغة English
 تأليف Giulio Caravagna




اسأل ChatGPT حول البحث

Tumors constitute a wide family of diseases kinetically characterized by the co-presence of multiple spatio-temporal scales. So, tumor cells ecologically interplay with other kind of cells, e.g. endothelial cells or immune system effectors, producing and exchanging various chemical signals. As such, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model agents at low concentrations, and mean-field equations model chemical signals. In previous works we proposed a hybrid version of the well-known Panetta-Kirschner mean-field model of tumor cells, effector cells and Interleukin-2. Our hybrid model suggested -at variance of the inferences from its original formulation- that immune surveillance, i.e. tumor elimination by the immune system, may occur through a sort of side-effect of large stochastic oscillations. However, that model did not account that, due to both chemical transportation and cellular differentiation/division, the tumor-induced recruitment of immune effectors is not instantaneous but, instead, it exhibits a lag period. To capture this, we here integrate a mean-field equation for Interleukins-2 with a bi-dimensional delayed stochastic process describing such delayed interplay. An algorithm to realize trajectories of the underlying stochastic process is obtained by coupling the Piecewise Deterministic Markov process (for the hybrid part) with a Generalized Semi-Markovian clock structure (to account for delays). We (i) relate tumor mass growth with delays via simulations and via parametric sensitivity analysis techniques, (ii) we quantitatively determine probabilistic eradication times, and (iii) we prove, in the oscillatory regime, the existence of a heuristic stochastic bifurcation resulting in delay-induced tumor eradication, which is neither predicted by the mean-field nor by the hybrid non-delayed models.



قيم البحث

اقرأ أيضاً

A delayed model describing the dynamics of HIV (Human Immunodeficiency Virus) with CTL (Cytotoxic T Lymphocytes) immune response is investigated. The model includes four nonlinear differential equations describing the evolution of uninfected, infecte d, free HIV viruses, and CTL immune response cells. It includes also intracellular delay and two treatments (two controls). While the aim of first treatment consists to block the viral proliferation, the role of the second is to prevent new infections. Firstly, we prove the well-posedness of the problem by establishing some positivity and boundedness results. Next, we give some conditions that insure the local asymptotic stability of the endemic and disease-free equilibria. Finally, an optimal control problem, associated with the intracellular delayed HIV model with CTL immune response, is posed and investigated. The problem is shown to have an unique solution, which is characterized via Pontryagins minimum principle for problems with delays. Numerical simulations are performed, confirming stability of the disease-free and endemic equilibria and illustrating the effectiveness of the two incorporated treatments via optimal control.
Immune system is the most important defense system to resist human pathogens. In this paper we present an immune model with bipartite graphs theory. We collect data through COPE database and construct an immune cell- mediators network. The act degree distribution of this network is proved to be power-law, with index of 1.8. From our analysis, we found that some mediators with high degree are very important mediators in the process of regulating immune activity, such as TNF-alpha, IL-8, TNF-alpha receptors, CCL5, IL-6, IL-2 receptors, TNF-beta receptors, TNF-beta, IL-4 receptors, IL-1 beta, CD54 and so on. These mediators are important in immune system to regulate their activity. We also found that the assortative of the immune system is -0.27. It reveals that our immune system is non-social network. Finally we found similarity of the network is 0.13. Each two cells are similar to small extent. It reveals that many cells have its unique features. The results show that this model could describe the immune system comprehensive.
Increasing number in global COVID-19 cases demands for mathematical model to analyze the interaction between the virus dynamics and the response of innate and adaptive immunity. Here, based on the assumption of a weak and delayed response of the inna te and adaptive immunity in SARS-CoV-2 infection, we constructed a mathematical model to describe the dynamic processes of immune system. Integrating theoretical results with clinical COVID-19 patients data, we classified the COVID-19 development processes into three typical modes of immune responses, correlated with the clinical classification of mild & moderate, severe and critical patients. We found that the immune efficacy (the ability of host to clear virus and kill infected cells) and the lymphocyte supply (the abundance and pool of naive T and B cell) play important roles in the dynamic process and determine the clinical outcome, especially for the severe and critical patients. Furthermore, we put forward possible treatment strategies for the three typical modes of immune response. We hope our results can help to understand the dynamical mechanism of the immune response against SARS-CoV-2 infection, and to be useful for the treatment strategies and vaccine design.
The transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of paramount importance to the controlling and combating of coronavirus disease 2019 (COVID-19) pandemic. Currently, near 15,000 SARS-CoV-2 single muta tions have been recorded, having a great ramification to the development of diagnostics, vaccines, antibody therapies, and drugs. However, little is known about SARS-CoV-2 evolutionary characteristics and general trend. In this work, we present a comprehensive genotyping analysis of existing SARS-CoV-2 mutations. We reveal that host immune response via APOBEC and ADAR gene editing gives rise to near 65% of recorded mutations. Additionally, we show that children under age five and the elderly may be at high risk from COVID-19 because of their overreacting to the viral infection. Moreover, we uncover that populations of Oceania and Africa react significantly more intensively to SARS-CoV-2 infection than those of Europe and Asia, which may explain why African Americans were shown to be at increased risk of dying from COVID-19, in addition to their high risk of getting sick from COVID-19 caused by systemic health and social inequities. Finally, our study indicates that for two viral genome sequences of the same origin, their evolution order may be determined from the ratio of mutation type C$>$T over T$>$C.
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and dis tributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا