ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Higgs coupling measurements at the LHC through ratios of production cross sections

299   0   0.0 ( 0 )
 نشر من قبل Abdelhak Djouadi
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Abdelhak Djouadi




اسأل ChatGPT حول البحث

Now that the Higgs particle has been observed by the ATLAS and CMS experiments at the LHC, the next endeavour would be to probe its fundamental properties and to measure its couplings to fermions and gauge bosons with the highest possible accuracy. However, the measurements will be limited by significant theoretical uncertainties that affect the production cross section in the main production channels as well as by experimental systematical errors. Following earlier work, we propose in this paper to consider ratios of Higgs production cross sections times decay branching ratios in which most of the theoretical uncertainties and some systematical errors, such as the ones due to the luminosity measurement and the Higgs decay branching fractions, cancel out. The couplings of the Higgs particle could be then probed in a way that will be mostly limited by the statistical accuracy achievable at the LHC and accuracies at the percent level are foreseen for some of the ratios at the end of the LHC run. At the theoretical level, these ratios are also interesting as they do not involve the ambiguities that affect the Higgs total decay width in new physics scenarios. To illustrate how these ratios can be used to determine the Higgs couplings, we perform a rough analysis of the recent ATLAS and CMS data which shows that there is presently no significant deviation from the Standard Model expectation.



قيم البحث

اقرأ أيضاً

We present results for the SM and MSSM Higgs-boson production cross sections at the Tevatron and the LHC. The SM cross sections are a compilation of the state-of-the-art theoretical predictions. The MSSM cross sections are obtained from the SM ones b y means of an effective coupling approximation, as implemented in FeynHiggs. Numerical results have been obtained in four benchmark scenarios for two values of tan beta, tan beta = 5, 40.
In this work we explore the sensitivity to the Higgs self-coupling $lambda$ in the production of two Higgs bosons via vector boson scattering at the LHC. Although these production channels, concretely $W^+W^- to HH$ and $ ZZ to HH$, have lower rates than gluon-gluon fusion, they benefit from being tree level processes, being independent of top physics and having very distinctive kinematics that allow to obtain very clean experimental signatures. This makes them competitive channels concerning the sensitivity to the Higgs self-coupling. In order to give predictions for the sensitivity to this coupling, we first study the role of $lambda$ at the subprocess level, both in and beyond the Standard Model, to move afterwards to the LHC scenario. We characterize the $ppto HHjj$ case first and then provide quantitative results for the values of $lambda$ that can be probed at the LHC in vector boson scattering processes after considering the Higgs boson decays. We focus mainly in $ppto bbar{b}bbar{b}jj$, since it has the largest signal rates, and also comment on the potential of other channels, such as $ppto bbar{b}gammagamma jj$, as they lead to cleaner, although smaller, signals. Our whole study is performed for a center of mass energy of $sqrt{s}=14$ TeV and for various future expected LHC luminosities.
This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.
We review recent theoretical progress in evaluating higher order QCD corrections to Higgs boson differential distributions at hadron-hadron colliders.
We perform a phenomenological study of $Z$ plus jet, Higgs plus jet and di-jet production at the Large Hadron Collider. We investigate in particular the dependence of the leading jet cross section on the jet radius as a function of the jet transverse momentum. Theoretical predictions are obtained using perturbative QCD calculations at the next-to and next-to-next-to-leading order, using a range of renormalization and factorization scales. The fixed order predictions are compared to results obtained from matching next-to-leading order calculations to parton showers. A study of the scale dependence as a function of the jet radius is used to provide a better estimate of the scale uncertainty for small jet sizes. The non-perturbative corrections as a function of jet radius are estimated from different generators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا