ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Higgs doublets, a 4th generation and a 125 GeV Higgs: a review

190   0   0.0 ( 0 )
 نشر من قبل Shaouly Bar-Shalom
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the possible role that multi-Higgs models may play in our understanding of the dynamics of a heavy 4th sequential generation of fermions. We describe the underlying ingredients of such models, focusing on two Higgs doublets, and discuss how they may effectively accommodate the low energy phenomenology of such new heavy fermionic degrees of freedom. We also discuss the constraints on these models from precision electroweak data as well as from flavor physics and the implications for collider searches of the Higgs particles and of the 4th generation fermions, bearing in mind the recent observation of a light Higgs with a mass of ~125 GeV.



قيم البحث

اقرأ أيضاً

We use sampling techniques to find robust constraints on the masses of a possible fourth sequential fermion generation from electroweak oblique variables. We find that in the case of a light (115 GeV) Higgs from a single electroweak symmetry breaking doublet, inverted mass hierarchies are possible for both quarks and leptons, but a mass splitting more than M(W) in the quark sector is unlikely. We also find constraints in the case of a heavy (600 GeV) Higgs in a single doublet model. As recent data from the Large Hadron Collider hints at the existence of a resonance at 124.5 GeV and a single Higgs doublet at that mass is inconsistent with a fourth fermion generation, we examine a type II two Higgs doublet model. In this model, there are ranges of parameter space where the Higgs sector can potentially counteract the effects of the fourth generation. Even so, we find that such scenarios produce qualitatively similar fermion mass distributions.
253 - Shaouly Bar-Shalom 2013
We describe a hybrid framework for electroweak symmetry breaking (EWSB), in which the Higgs mechanism is combined with a Nambu-Jona-Lasinio mechanism. The model introduces an unconstrained scalar (i.e., acts as fundamental but not the SM field) and a strongly coupled doublet of heavy quarks with a mass around 500 GeV, which forms a condensate at a compositeness scale Lambda ~ O(1) TeV. This setup is matched at that scale to a tightly constrained hybrid two Higgs doublet model, where both the composite and unconstrained scalars participate in EWSB. This allows us to get a good candidate for the recently observed 125 GeV scalar which has properties very similar to the Standard Model Higgs. The heavier (mostly composite) CP-even scalar has a mass around 500 GeV, while the pseudoscalar and the charged Higgs particles have masses in the range 200 -300 GeV.
We examine GUT-scale NMSSM scenarios in which {it both} $h_1$ and $h_2$ lie in the 123 -- 128 GeV mass range. Very substantially enhanced $gammagamma$ and other rates are possible. Broadened mass peaks are natural.
We interpret the recent discovery of a 125 GeV Higgs-like state in the context of a two Higgs doublets model with a heavy 4th sequential generation of fermions, in which one Higgs doublet couples only to the 4th generation fermions, while the second doublet couples to the lighter fermions of the 1st-3rd families. This model is designed to accommodate the apparent heaviness of the 4th generation fermions and to effectively address the low-energy phenomenology of a dynamical electroweak symmetry breaking scenario. The physical Higgs states of the model are, therefore, viewed as composites primarily of the 4th generation fermions. We find that the lightest Higgs, h, is a good candidate for the recently discovered 125 GeV spin-zero particle, when tanbeta ~ O(1), for typical 4th generation fermion masses of M_{4G} = 400 -600 GeV, and with a large t - t mixing in the right-handed quarks sector. This, in turn, leads to BR(t -> t h) ~ O(1), which drastically changes the t decay pattern. We also find that, based on the current Higgs data, this two Higgs doublet model generically predicts an enhanced production rate (compared to the SM) in the pp -> h -> tau tau channel and a reduced VV -> h -> gamma gamma and pp -> V -> Vh -> Vbb ones. Finally, the heavier CP-even Higgs is excluded by the current data up to m_H ~ 500 GeV, while the pseudoscalar state, A, can be as light as 130 GeV. These heavier Higgs states and the expected deviations from the SM in some of the Higgs production channels can be further excluded or discovered with more data.
Electroweak baryogenesis in a two-Higgs doublet model is a well-motivated and testable scenario for physics beyond the Standard Model. An attractive way of providing $CP$ violation is through flavor-changing Higgs couplings, where the top-charm coupl ing is hardly constrained. This minimal scenario can be tested by searching for heavy charged and neutral Higgs bosons at the LHC. While the charged Higgs signature requires a dedicated analysis, the neutral Higgs signature will be covered by a general search for same-sign top pairs. Together, they provide a conclusive test of this kind of baryogenesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا