ﻻ يوجد ملخص باللغة العربية
To clarify the whole picture of the valence-band structures of prototype ferromagnetic semiconductors (III,Mn)As (III: In and Ga), we perform systematic experiments of the resonant tunneling spectroscopy on [(In_0.53Ga_0.47)_1-x Mn_x]As (x=0.06-0.15) and In_0.87Mn_0.13As grown on AlAs/ In_0.53Ga_0.47As:Be/ p+InP(001). We show that the valence band of InGaMnAs almost remains unchanged from that of the host semiconductor InGaAs, that the Fermi level exists in the band gap, and that the p-d exchange splitting in the valence band is negligibly small in (InGaMn)As. In the In0.87Mn0.13As sample, although the resonant peaks are very weak due to the large strain induced by the lattice mismatch between InP and InMnAs, our results also indicate that the Fermi level exists in the band gap and that the p-d exchange splitting in the valence band is negligibly small. These results are quite similar to those of GaMnAs obtained by the same method, meaning that there are no holes in the valence band, and that the impurity-band holes dominate the transport and magnetism both in the InGaMnAs and In_0.87Mn_0.13As films. This band picture of (III,Mn)As is remarkably different from that of II-VI-based diluted magnetic semiconductors.
Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field and local proximitized magnetic exchange. In this work, we present lattice matched hybrid epitaxy of s
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is obse
(Ga,Mn)As is at the forefront of research exploring the synergy of magnetism with the physics and technology of semiconductors, and has led to discoveries of new spin-dependent phenomena and functionalities applicable to a wide range of material syst
Cr2Ge2Te6 is an intrinsic ferromagnetic semiconductor with van der Waals type layered structure, thus represents a promising material for novel electronic and spintronic devices. Here we combine scanning tunneling microscopy and first-principles calc
We analyze microscopically the valence and impurity band models of ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with conventional parameterization and the full potential LDA+U calculations give a very similar picture of s