ﻻ يوجد ملخص باللغة العربية
An $ntimes n$ matrix $M$ is called a textit{fooling-set matrix of size $n$} if its diagonal entries are nonzero and $M_{k,ell} M_{ell,k} = 0$ for every $k e ell$. Dietzfelbinger, Hromkovi{v{c}}, and Schnitger (1996) showed that $n le (mbox{rk} M)^2$, regardless of over which field the rank is computed, and asked whether the exponent on $mbox{rk} M$ can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size $n = binom{mbox{rk} M+1}{2}$. In nonzero characteristic, we construct an infinite family of matrices with $n= (1+o(1))(mbox{rk} M)^2$.
An ntimes n matrix M is called a fooling-set matrix of size n, if its diagonal entries are nonzero, whereas for every k e ell we have M_{k,ell} M_{ell,k} = 0. Dietzfelbinger, Hromkoviv{c}, and Schnitger (1996) showed that n le (rk M)^2, regardless of
Say that A is a Hadamard factorization of the identity I_n of size n if the entrywise product of A and the transpose of A is I_n. It can be easily seen that the rank of any Hadamard factorization of the identity must be at least sqrt{n}. Dietzfelbing
We study the log-rank conjecture from the perspective of point-hyperplane incidence geometry. We formulate the following conjecture: Given a point set in $mathbb{R}^d$ that is covered by constant-sized sets of parallel hyperplanes, there exists an af
In the study of extensions of polytopes of combinatorial optimization problems, a notorious open question is that for the size of the smallest extended formulation of the Minimum Spanning Tree problem on a complete graph with $n$ nodes. The best know
A set $Ssubseteq 2^E$ of subsets of a finite set $E$ is emph{powerful} if, for all $Xsubseteq E$, the number of subsets of $X$ in $S$ is a power of 2. Each powerful set is associated with a non-negative integer valued function, which we call the rank