ﻻ يوجد ملخص باللغة العربية
Context. Photospheric motions shuffle the footpoints of the strong axial magnetic field that threads coronal loops giving rise to turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets where energy is deposited at small-scales and the heating occurs. Previous studies show that current sheets thickness is orders of magnitude smaller than current state of the art observational resolution (~700 km). Aim. In order to understand coronal heating and interpret correctly observations it is crucial to study the thermodynamics of such a system where energy is deposited at unresolved small-scales. Methods. Fully compressible three-dimensional magnetohydrodynamic simulations are carried out to understand the thermodynamics of coronal heating in the magnetically confined solar corona. Results. We show that temperature is highly structured at scales below observational resolution and nonhomogeneously distributed so that only a fraction of the coronal mass and volume gets heated at each time. Conclusions. This is a multi-thermal system where hotter and cooler plasma strands are found one next to the other also at sub-resolution scales and exhibit a temporal dynamics.
2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfv{e}n waves excited in the photosphe
A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuous
Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this qu
We investigate the relaxation of braided magnetic loops in order to find out how the type of braiding via footpoint motions affects resultant heating of the loop. Two magnetic loops, braided in different ways, are used as initial conditions in resist
Some models of coronal heating suppose that convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses i