ﻻ يوجد ملخص باللغة العربية
Dynamical effects in general relativity have been finally, relatively recently observed by LIGOcite{2016LRR....19....1A}. To be able to measure these signals, great care has to be taken to minimize all sources of noise in the detector. One of the sources of noise is called Newtonian noise. In this article we present an analysis of the dynamical (time dependent) nature of the Newtonian noise. In that respect, it is a misnomer to call it Newtonian noise, the Newtonian theory does not afford any dynamical notion of the gravitational field. The dynamical aspects of the nature of the Newtonian noise have heretofore been disregarded as they were considered negligible. However, we demonstrate that they are indeed not far from the realm of being measurable. They could be used to validate Einsteinian general relativity or to give valuable information on the true dynamical nature of gravity. One fundamental question, for example, is a direct measurement the speed of propagation of gravitational effects and the verification that it is indeed the same as the speed of light. We propose a simple laboratory experiment that could affirm or deny this proposition. We also analyze the possibility of the detection of large geophysical events, such as earthquakes. We find that large seismic events seem to be easily observable with the present ensemble of gravitational wave detectors,. The ensemble of gravitational wave detectors could easily serve as a system of early warning for otherwise catastrophic seismic events.
Spacetime geometries dual to arbitrary fluid flows in strongly coupled N=4 super Yang Mills theory have recently been constructed perturbatively in the long wavelength limit. We demonstrate that these geometries all have regular event horizons, and d
We prove that Killing horizons in massive IIA supergravity preserve an even number of supersymmetries, and that their symmetry algebra contains an $mathfrak{sl}(2, R)$ subalgebra, confirming the conjecture of [5]. We also prove a new class of Lichner
In recent years several approaches to quantum gravity have found evidence for a scale dependent spectral dimension of space-time varying from four at large scales to two at small scales of order of the Planck length. The first evidence came from nume
Gravity is perturbatively renormalizable for the physical states which can be conveniently defined via foliation-based quantization. In recent sequels, one-loop analysis was explicitly carried out for Einstein-scalar and Einstein-Maxwell systems. Var
We study cosmological evolutions of the generalized model of nonlinear massive gravity in which the graviton mass is given by a rolling scalar field and is varying along time. By performing dynamical analysis, we derive the critical points of this sy