ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Experimental Studies of Os^-: Observation of a Bound-Bound Electric Dipole Transition in an Atomic Negative Ion

83   0   0.0 ( 0 )
 نشر من قبل Zineb Felfli
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bilodeau and Haugan [1], using Infrared laser photodetachment spectroscopy, measured the binding energies (BEs) of the ground state (4Fe9/2) and the excited state (4Fe7/2) of the Os^- ion to be 1.07780(12) eV and 0.553(3) eV, respectively. These values are consistent with those calculated using Relativistic Configuration Interaction (RCI) calculations [2]. Here we have calculated the BEs for the ground state and the two excited states of the Os^- ion using our recent complex angular momentum (CAM) methodology [3] and obtained the BEs of 1.910, 1.230 and 0.224 eV, respectively (see Figure). We conclude that: 1) the measured value of 1.07780(12) eV corresponds to an excited state of Os^- and not to the EA of Os and 2) the EA of Os is 1.910 eV.



قيم البحث

اقرأ أيضاً

69 - C. W. Walter 2020
The first direct experimental observation of an electric quadrupole ($textit{E}$2) transition between bound states of an atomic negative ion has been made. The transition was observed in the negative ion of bismuth by resonant (1+1) photodetachment f rom Bi$^-$ $^3textit{P}_2$ via excitation of the Bi$^-$ $^3textit{P}_0$ fine structure state. The $textit{E}$2 transition properties were independently calculated using a hybrid theoretical approach to account for the strong multi-level electron interactions and relativistic effects. The experimental and theoretical results are in excellent agreement, providing valuable new insights into this complex system and forbidden transitions in negative ions.
We show that the resonant dipole-dipole interaction can give rise to bound states between two and three Rydberg atoms with non-overlapping electron clouds. The dimer and trimer states arise from avoided level crossings between states converging to di fferent fine structure manifolds in the limit of separated atoms. We analyze the angular dependence of the potential wells, characterize the quantum dynamics in these potentials and discuss methods for their production and detection. Typical distances between the atoms are of the order of several micrometers which can be resolved in state-of-the-art experiments. The potential depths and typical oscillation frequencies are about one order of magnitude larger as compared to the dimer and trimer states investigated in [PRA $textbf{86}$ 031401(R) (2012)] and [PRL $textbf{111}$ 233003 (2014)], respectively. We find that the dimer and trimer molecules can be aligned with respect to the axis of a weak electric field.
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $Rapprox 2,mutext{m}$, and each configuration is two-fold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
A simple analytical expression for the electric dipole polarizability of the three-hadron bound system having only one stable bound state has been derived neglecting by the higher orbital components of the off-shell three-body transition matrix at th e energy of the bound state. As a case in point, we have estimated the electric dipole polarizability of the triton, using a cluster triton wave function and the Hulthen potential to describe the related p-n and n-d bound states.
The Authors reply to the Comment of Golub and Lamoreaux. The experimental limit on the neutron electric dipole moment remains unchanged from that previously announced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا