ترغب بنشر مسار تعليمي؟ اضغط هنا

Weighing the Giants - III. Methods and Measurements of Accurate Galaxy Cluster Weak-Lensing Masses

523   0   0.0 ( 0 )
 نشر من قبل Douglas Applegate
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known. This cluster sample, introduced earlier in this series of papers, spans redshifts 0.15 < z_cl < 0.7, and is well suited to calibrate mass proxies for current cluster cosmology experiments. Cluster masses are measured with a standard `color-cut lensing method from three-filter photometry of each field. Additionally, for 27 cluster fields with at least five-filter photometry, we measure high-accuracy masses using a new method that exploits all information available in the photometric redshift posterior probability distributions of individual galaxies. Using simulations based on the COSMOS-30 catalog, we demonstrate control of systematic biases in the mean mass of the sample with this method, from photometric redshift biases and associated uncertainties, to better than 3%. In contrast, we show that the use of single-point estimators in place of the full photometric redshift posterior distributions can lead to significant redshift-dependent biases on cluster masses. The performance of our new photometric redshift-based method allows us to calibrate `color-cut` masses for all 51 clusters in the present sample to a total systematic uncertainty of ~7% on the mean mass, a level sufficient to significantly improve current cosmology constraints from galaxy clusters. Our results bode well for future cosmological studies of clusters, potentially reducing the need for exhaustive spectroscopic calibration surveys as compared to other techniques, when deep, multi-filter optical and near-IR imaging surveys are coupled with robust photometric redshift methods.



قيم البحث

اقرأ أيضاً

This is the first in a series of papers in which we measure accurate weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known at redshifts 0.15<z<0.7, in order to calibrate X-ray and other mass proxies for cosmological cluster expe riments. The primary aim is to improve the absolute mass calibration of cluster observables, currently the dominant systematic uncertainty for cluster count experiments. Key elements of this work are the rigorous quantification of systematic uncertainties, high-quality data reduction and photometric calibration, and the blind nature of the analysis to avoid confirmation bias. Our target clusters are drawn from RASS X-ray catalogs, and provide a versatile calibration sample for many aspects of cluster cosmology. We have acquired wide-field, high-quality imaging using the Subaru and CFHT telescopes for all 51 clusters, in at least three bands per cluster. For a subset of 27 clusters, we have data in at least five bands, allowing accurate photo-z estimates of lensed galaxies. In this paper, we describe the cluster sample and observations, and detail the processing of the SuprimeCam data to yield high-quality images suitable for robust weak-lensing shape measurements and precision photometry. For each cluster, we present wide-field color optical images and maps of the weak-lensing mass distribution, the optical light distribution, and the X-ray emission, providing insights into the large-scale structure in which the clusters are embedded. We measure the offsets between X-ray centroids and Brightest Cluster Galaxies in the clusters, finding these to be small in general, with a median of 20kpc. For offsets <100kpc, weak-lensing mass measurements centered on the BCGs agree well with values determined relative to the X-ray centroids; miscentering is therefore not a significant source of systematic uncertainty for our mass measurements. [abridged]
Galaxy clusters are a promising probe of late-time structure growth, but constraints on cosmology from cluster abundances are currently limited by systematics in their inferred masses. One unmitigated systematic effect in weak-lensing mass inference is ignoring the presence of baryons and treating the entire cluster as a dark matter halo. In this work we present a new flexible model for cluster densities that captures both the baryonic and dark matter profiles, a new general technique for calculating the lensing signal of an arbitrary density profile, and a methodology for stacking those lensing signal to appropriately model stacked weak-lensing measurements of galaxy cluster catalogues. We test this model on 1400 simulated clusters. Similarly to previous studies, we find that a dark matter-only model overestimates the average mass by $7.5%$, but including our baryonic term reduces that to $0.7%$. Additionally, to mitigate the computational complexity of our model, we construct an emulator (surrogate model) which accurately interpolates our model for parameter inference, while being much faster to use than the raw model. We also provide an open-source software framework for our model and emulator, called maszcal, which will serve as a platform for continued efforts to improve these mass-calibration techniques. In this work, we detail our model, the construction of the emulator, and the tests which we used to validate that our model does mitigate bias. Lastly, we describe tests of the emulators accuracy
531 - Adam B. Mantz 2016
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first su ch results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range $0.0<z<0.5$ is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton $Y$ from Planck. While the richness--mass relation is in excellent agreement with recent work, the measured $Y$--mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. The latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.
We present results from the Wendelstein Weak Lensing (WWL) pathfinder project, in which we have observed three intermediate redshift Planck clusters of galaxies with the new 30$times 30$ wide field imager at the 2m Fraunhofer Telescope at Wendelstein Observatory. We investigate the presence of biases in our shear catalogues and estimate their impact on our weak lensing mass estimates. The overall calibration uncertainty depends on the cluster redshift and is below 8.1-15 per cent for $z approx 0.27-0.77$. It will decrease with improvements on the background sample selection and the multiplicative shear bias calibration. We present the first weak lensing mass estimates for PSZ1 G109.88+27.94 and PSZ1 G139.61+24.20, two SZ-selected cluster candidates. Based on Wendelstein colors and SDSS photometry, we find that the redshift of PSZ1 G109.88+27.94 has to be corrected to $z approx 0.77$. We investigate the influence of line-of-sight structures on the weak lensing mass estimates and find upper limits for two groups in each of the fields of PSZ1 G109.88+27.94 and PSZ1 G186.98+38.66. We compare our results to SZ and dynamical mass estimates from the literature, and in the case of PSZ1 G186.98+38.66 to previous weak lensing mass estimates. We conclude that our pathfinder project demonstrates that weak lensing cluster masses can be accurately measured with the 2m Fraunhofer Telescope.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top ics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا