ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigidity of action of compact quantum groups III: the general case

129   0   0.0 ( 0 )
 نشر من قبل Debashish Goswami
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Debashish Goswami




اسأل ChatGPT حول البحث

If a compact quantum group acts faithfully and smoothly (in the sense of Goswami 2009) on a smooth, compact, oriented, connected Riemannian manifold such that the action induces a natural bimodule morphism on the module of sections of the co-tangent bundle, then it is proved that the quantum group is necessarily commutative as a $C^{*}$ algebra i.e. isomorphic with $ C(G)$ for some compact group $G$. From this, we deduce that the quantum isometry group of such a manifold M coincides with $C(ISO(M))$ where $ISO(M) $ is the group of (classical) isometries, i.e. there is no genuine quantum isometry of such a manifold.



قيم البحث

اقرأ أيضاً

Suppose that a compact quantum group Q acts faithfully and isomet- rically (in the sense of [10]) on a smooth compact, oriented, connected Riemannian manifold M . If the manifold is stably parallelizable then it is shown that the compact quantum grou p is necessarily commutative as a C ast algebra i.e. Q = C(G) for some compact group G. Using this, it is also proved that the quantum isometry group of Rieffel deformation of such manifold M must be a Rieffel-Wang deformation of C(ISO(M))
183 - Pekka Salmi 2010
We show that there is a one-to-one correspondence between compact quantum subgroups of a co-amenable locally compact quantum group $mathbb{G}$ and certain left invariant C*-subalgebras of $C_0(mathbb{G})$. We also prove that every compact quantum sub group of a co-amenable quantum group is co-amenable. Moreover, there is a one-to-one correspondence between open subgroups of an amenable locally compact group $G$ and non-zero, invariant C*-subalgebras of the group C*-algebra $C^*(G)$.
Suppose that a compact quantum group $clq$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^*$ (co)-action $alpha$ on $C(M)$, such that the action $alpha$ is isometric in the sense of cite{Goswami} for some Riemannian struc ture on $M$. We prove that $clq$ must be commutative as a $C^{ast}$ algebra i.e. $clqcong C(G)$ for some compact group $G$ acting smoothly on $M$. In particular, the quantum isometry group of $M$ (in the sense of cite{Goswami}) coincides with $C(ISO(M))$.
Let G be a classical compact Lie group and G_mu the associated compact matrix quantum group deformed by a positive parameter mu (or a nonzero and real mu in the type A case). It is well known that the category Rep(G_mu) of unitary f.d. representation s of G_mu is a braided tensor C*-category. We show that any braided tensor *-functor from Rep(G_mu) to another braided tensor C*-category with irreducible tensor unit is full if |mu| eq 1. In particular, the functor of restriction to the representation category of a proper compact quantum subgroup, cannot be made into a braided functor. Our result also shows that the Temperley--Lieb category generated by an object of dimension >2 can not be embedded properly into a larger category with the same objects as a braided tensor C*-subcategory.
122 - D Goswami , S Joardar 2018
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) m anifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا