ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

352   0   0.0 ( 0 )
 نشر من قبل Ian Harry
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cmathbf{J}/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.



قيم البحث

اقرأ أيضاً

Modified gravitational wave (GW) propagation is a generic phenomenon in modified gravity. It affects the reconstruction of the redshift of coalescing binaries from the luminosity distance measured by GW detectors, and therefore the reconstruction of the actual masses of the component compact stars from the observed (`detector-frame) masses. We show that, thanks to the narrowness of the mass distribution of binary neutron stars, this effect can provide a clear signature of modified gravity, particularly for the redshifts explored by third generation GW detectors such as Einstein Telescope and Cosmic Explorer.
Gravitational waves emitted from the coalescence of neutron star binaries open a new window to probe matter and fundamental physics in unexplored, extreme regimes. To extract information about the supranuclear matter inside neutron stars and the prop erties of the compact binary systems, robust theoretical prescriptions are required. We give an overview about general features of the dynamics and the gravitational wave signal during the binary neutron star coalescence. We briefly describe existing analytical and numerical approaches to investigate the highly dynamical, strong-field region during the merger. We review existing waveform approximants and discuss properties and possible advantages and shortcomings of individual waveform models, and their application for real gravitational-wave data analysis.
Gravitational waves radiated by the coalescence of compact-object binaries containing a neutron star and a black hole are one of the most interesting sources for the ground-based gravitational-wave observatories Advanced LIGO and Advanced Virgo. Adva nced LIGO will be sensitive to the inspiral of a $1.4, M_odot$ neutron star into a $10,M_odot$ black hole to a maximum distance of $sim 900$ Mpc. Achieving this sensitivity and extracting the physics imprinted in observed signals requires accurate modeling of the binary to construct template waveforms. In a NSBH binary, the black hole may have significant angular momentum (spin), which affects the phase evolution of the emitted gravitational waves. We investigate the ability of post-Newtonian (PN) templates to model the gravitational waves emitted during the inspiral phase of NSBH binaries. We restrict the black holes spin to be aligned with the orbital angular momentum and compare several approximants. We examine restricted amplitude waveforms that are accurate to 3.5PN order in the orbital dynamics and complete to 2.5PN order in the spin dynamics. We also consider PN waveforms with the recently derived 3.5PN spin-orbit and 3PN spin-orbit tail corrections. We compare these approximants to the effective-one-body model. For all these models, large disagreements start at low to moderate black hole spins, particularly for binaries where the spin is anti-aligned with the orbital angular momentum. We show that this divergence begins in the early inspiral at $v sim 0.2$ for $chi_{BH} sim 0.4$. PN spin corrections beyond those currently known will be required for optimal detection searches and to measure the parameters of neutron star--black hole binaries. While this complicates searches, the strong dependence of the gravitational-wave signal on the spin dynamics will make it possible to extract significant astrophysical information.
154 - Lam Hui , Sean T. McWilliams , 2012
Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk, with the v ariance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9*10^(-14) at ~10^(-4) Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-dwarf/supermassive black-hole binaries in the early/late stages of inspiral, and TeV scale preheating or phase transitions. The bound improves as (time span)^(-2) and (sampling rate)^(-1/2). The Hulse-Taylor constraint can be improved to ~3.8*10^(-15) with a suitable observational campaign over the next decade. Our approach can also be applied to other binaries, including (with suitable care) the Earth-Moon system, to obtain constraints at different frequencies. The observation of additional binary pulsars with the SKA could reach a sensitivity of h_c ~ 3*10^(-17).
LIGO and Virgo have initiated the era of gravitational-wave (GW) astronomy; but in order to fully explore GW frequency spectrum, we must turn our attention to innovative techniques for GW detection. One such approach is to use binary systems as dynam ical GW detectors by studying the subtle perturbations to their orbits caused by impinging GWs. We present a powerful new formalism for calculating the orbital evolution of a generic binary coupled to a stochastic background of GWs, deriving from first principles a secularly-averaged Fokker-Planck equation which fully characterises the statistical evolution of all six of the binarys orbital elements. We also develop practical tools for numerically integrating this equation, and derive the necessary statistical formalism to search for GWs in observational data from binary pulsars and laser-ranging experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا