ﻻ يوجد ملخص باللغة العربية
The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, X-ray binaries and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. Over seventy per cent of all massive stars will exchange mass with a companion, leading to a binary merger in one third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.
The discovery via gravitational waves of binary black hole systems with total masses greater than $60M_odot$ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving
Rotation is thought to be a major factor in the evolution of massive stars, especially at low metallicity, with consequences for their chemical yields, ionizing flux and final fate. Determining the natal rotation-rate distribution of stars is of high
We study the evolution of close binary systems in order to account for the existence of the recently observed binary system containing the most massive millisecond pulsar ever detected, PSR J0740+6620, and its ultra-cool helium white dwarf companion.
Recent studies suggest the existence of very massive stars (VMS) up to 300 solar masses in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 solar masses, it is timely to evaluate the
The fate of massive stars up to 300 Msun is highly uncertain. Do these objects produce pair-instability explosions, or normal Type Ic supernovae? In order to address these questions, we need to know their mass-loss rates during their lives. Here we p