ﻻ يوجد ملخص باللغة العربية
We test how well available stellar population models can reproduce observed u,g,r,i,z-band photometry of the local galaxy population (0.02<=z<=0.03) as probed by the SDSS. Our study is conducted from the perspective of a user of the models, who has observational data in hand and seeks to convert them into physical quantities. Stellar population models for galaxies are created by synthesizing star formations histories and chemical enrichments using single stellar populations from several groups (Starburst99, GALAXEV, Maraston2005, GALEV). The role of dust is addressed through a simplistic, but observationally motivated, dust model that couples the amplitude of the extinction to the star formation history, metallicity and the viewing angle. Moreover, the influence of emission lines is considered (for the subset of models for which this component is included). The performance of the models is investigated by: 1) comparing their prediction with the observed galaxy population in the SDSS using the (u-g)-(r-i) and (g-r)-(i-z) color planes, 2) comparing predicted stellar mass and luminosity weighted ages and metallicities, specific star formation rates, mass to light ratios and total extinctions with literature values from studies based on spectroscopy. Strong differences between the various models are seen, with several models occupying regions in the color-color diagrams where no galaxies are observed. We would therefore like to emphasize the importance of the choice of model. Using our preferred model we find that the star formation history, metallicity and also dust content can be constrained over a large part of the parameter space through the use of u,g,r,i,z-band photometry. However, strong local degeneracies are present due to overlap of models with high and low extinction in certain parts of color space.
We introduce a new method to determine galaxy cluster membership based solely on photometric properties. We adopt a machine learning approach to recover a cluster membership probability from galaxy photometric parameters and finally derive a membersh
Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity
SPECULOOS-South, an observatory composed of four independent 1m robotic telescopes, located at ESO Paranal, Chile, started scientific operation in January 2019. This Southern Hemisphere facility operates as part of SPECULOOS, an international network
We report first science results from our new spectrometer, the 2nd generation z(Redshift) and Early Universe Spectrometer (ZEUS-2), recently commissioned on the Atacama Pathfinder Experiment telescope (APEX). ZEUS-2 is a submillimeter grating spectro
We present ultraviolet through far-infrared surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes GALEX UV data, optical images from KPNO, CTIO and SD