ترغب بنشر مسار تعليمي؟ اضغط هنا

Nebular Attenuation in Halpha-selected Star-forming Galaxies at z=0.8 from the NewHalpha Survey

291   0   0.0 ( 0 )
 نشر من قبل Ivelina Momcheva
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the dust attenuation of Halpha-selected emission-line galaxies at z=0.8 from the NewHalpha narrowband survey. The analysis is based on deep follow-up spectroscopy with Magellan/IMACS, which captures the strong rest-frame optical emission lines from [OII] lambda 3727 to [OIII] lambda 5007. The spectroscopic sample used in this analysis consists of 341 confirmed Halpha emitters. We place constraints on the AGN fraction using diagnostics which can be applied at intermediate redshift. We find that at least 5% of the objects in our spectroscopic sample can be classified as AGN and 2% are composite, i.e. powered by a combination of star-formation and AGN activity. We measure the dust attenuation for individual objects from the ratios of the higher order Balmer lines. The Hbeta and Hgamma pair of lines is detected with S/N>5 in 55 individual objects and the Hbeta and Hdelta pair is detected in 50 individual objects. We also create stacked spectra to probe the attenuation in objects without individual detections. The median attenuation at Halpha based on the objects with individually detected lines is A(Halpha)=0.9+-1.0 magnitudes, in good agreement with the attenuation found in local samples of star-forming galaxies. We find that the z=0.8 galaxies occupy a similar locus of attenuation as a function of magnitude, mass and SFR as a comparison sample drawn from the SDSS DR4. Both the results from the individual z=0.8 galaxies and from the stacked spectra show consistency with the mass -- attenuation and SFR -- attenuation relations found in the local Universe, indicating that these relations are also applicable at intermediate redshift.



قيم البحث

اقرأ أيضاً

Using a sample of 299 Ha-selected galaxies at z~0.8, we study the relationship between galaxy stellar mass, gas-phase metallicity, and star formation rate (SFR), and compare to previous results. We use deep optical spectra obtained with the IMACS spe ctrograph at the Magellan telescope to measure strong oxygen lines. We combine these spectra and metallicities with (1) rest-frame UV-to-optical imaging, which allows us to determine stellar masses and dust attenuation corrections, and (2) Ha narrowband imaging, which provides a robust measure of the instantaneous SFR. Our sample spans stellar masses of 10^9 to 6*10^11 solar masses, SFRs of 0.4 to 270 solar masses per year, and metal abundances of 12+log(O/H)~8.3-9.1 (~0.4-2.6 solar metallicity). The correlations that we find between the Ha-based SFR and stellar mass (i.e., the star-forming main sequence), and between the stellar mass and metallicity, are both consistent with previous z~1 studies of star-forming galaxies. We then study the relationship between the three properties using various plane-fitting techniques (Lara-Lopez et al.) and a curve-fitting projection (Mannucci et al.). In all cases, we exclude strong dependence of the M-Z relation on SFR, but are unable to distinguish between moderate and no dependence. Our results are consistent with previous mass-metallicity-SFR studies. We check whether dataset limitations may obscure a strong dependence on the SFR by using mock samples drawn from the SDSS. These experiments reveal that the adopted signal-to-noise cuts may have a significant effect on the measured dependence. Further work is needed to investigate these results, and to test whether a fundamental metallicity relation or a fundamental plane describes star-forming galaxies across cosmic time.
We present the spatially resolved H-alpha (Ha) dynamics of sixteen star-forming galaxies at z~0.81 using the new KMOS multi-object integral field spectrograph on the ESO VLT. These galaxies were selected using 1.18 um narrow-band imaging from the 10 deg^2 CFHT-HiZELS survey of the SA22hr field, are found in a ~4Mpc over-density of Ha emitters and likely reside in a group/intermediate environment, but not a cluster. We confirm and identify a rich group of star-forming galaxies at z=0.813+-0.003, with thirteen galaxies within 1000 km/s of each other, and 7 within a diameter of 3Mpc. All our galaxies are typical star-forming galaxies at their redshift, 0.8+-0.4 SFR*(z=0.8), spanning a range of specific star formation rate of sSFR=0.2-1.1 Gyr^-1 and have a median metallicity very close to solar of 12+log(O/H)=8.62+-0.06. We measure the spatially resolved Ha dynamics of the galaxies in our sample and show that thirteen out of sixteen galaxies can be described by rotating disks and use the data to derive inclination corrected rotation speeds of 50-275 km/s. The fraction of disks within our sample is 75+-8, consistent with previous results based on HST morphologies of Ha selected galaxies at z~1 and confirming that disks dominate the star formation rate density at z~1. Our Ha galaxies are well fitted by the z~1-2 Tully-Fisher relation, confirming the evolution seen in the zero-point. Apart from having, on average, higher stellar masses and lower sSFRs, our group galaxies at z=0.813 present the same mass-metallicity and TF relation as z~1 field galaxies, and are all disk galaxies.
We present the results of a new study of dust attenuation at redshifts $3 < z < 4$ based on a sample of $236$ star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range $8.2 leq$ log$(M_{star}/M_{odot}) leq 10.6$ probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at $zsimeq3.5$ is similar in shape to the commonly-adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of $R_{V}=4.18pm0.29$. We show that the optical attenuation ($A_V$) versus stellar mass ($M_{star}$) relation predicted using our method is consistent with recent ALMA observations of galaxies at $2<z<3$ in the emph{Hubble} emph{Ultra} emph{Deep} emph{Field} (HUDF), as well as empirical $A_V - M_{star}$ relations predicted by a Calzetti-like law. Our results, combined with other literature data, suggest that the $A_V - M_{star}$ relation does not evolve over the redshift range $0<z<5$, at least for galaxies with log$(M_{star}/M_{odot}) gtrsim 9.5$. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at log$(M_{star}/M_{odot}) lesssim 9.0$.
209 - N. Reddy , M. Dickinson , D. Elbaz 2011
We take advantage of the sensitivity and resolution of Herschel at 100 and 160 micron to directly image the thermal dust emission and investigate the infrared luminosities, L(IR), and dust obscuration of typical star-forming (L*) galaxies at high red shift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5<z<2.6 in the GOODS-North field. Supplemented with deep Very Large Array (VLA) and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 micron, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L(UV)>1e10 Lsun at z~2 are luminous infrared galaxies (LIRGs) with a median L(IR)=(2.2+/-0.3)e11 Lsun. Typical galaxies at 1.5<z<2.6 have a median dust obscuration L(IR)/L(UV) = 7.1+/-1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2+/-0.6. This result is similar to that inferred from previous investigations of the UV, H-alpha, 24 micron, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope implies that L* galaxies with redder spectral slopes are also dustier, and that the correlation between UV slope and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame 30 and 50 micron fluxes validate on average the use of the local UV attenuation curve to recover the dust attenuation of typical star-forming galaxies at high redshift. In the simplest interpretation, the agreement between the local and high redshift UV attenuation curves suggests a similarity in the dust production and stellar and dust geometries of starburst galaxies over the last 10 billion years.
We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at $1.4<z<1.7$. The high-resolution m ode is implemented to detect H$alpha$ in emission between $1.6{rm -}1.8 mathrm{mu m}$ with $f_{rm Halpha}gtrsim4times10^{-17}$ erg cm$^{-2}$ s$^{-1}$. Here, we specifically focus on 271 sBzK-selected galaxies that yield a H$alpha$ detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further $J$-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction ($0.6lesssim A_mathrm{Halpha} lesssim 2.5$) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission hbox{$E_mathrm{star}(B-V)/E_mathrm{neb}(B-V)$} is 0.7--0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an H$alpha$-based main sequence with a slope ($0.81pm0.04$) and normalization similar to previous studies at these redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا