ﻻ يوجد ملخص باللغة العربية
We report on the observation of the 36 GHz methanol maser line in the star forming region DR21W to accurately measure the Zeeman effect. The reported Zeeman signature by Fish et al. (2011) became suspicious after an instrumental effect was discovered in the early days of the Very Large Array Wide-band Digital Architecture (WIDAR) correlator commissioning. We conclude that the previously reported magnetic field strength of 58 mG ((1.7 Hz/mG)/z) is instrumental in nature and thus incorrect. With the improved performance of the array, we now deduce a 3 sigma limit of -4.7 to +0.4 mG ((1.7 Hz/mG)/z) for the line-of-sight component of the magnetic field strength in DR21W.
We report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the high mass star forming region DR21W. There are two prominent maser spots in DR21W at the ends of a northwest-southeast linear arrangement. For the maser
Radio relics are elongated sources related to shocks driven by galaxy cluster merger events. Although these objects are highly polarized at GHz frequencies ($gtrsim 20%$), high-resolution studies of their polarization properties are still lacking. We
We have combined spectrosopic and photometric data from the Sloan Digital Sky Survey (SDSS) with $1.4$ GHz radio observations, conducted as part of the Stripe 82 $1-2$ GHz Snapshot Survey using the Karl G. Jansky Very Large Array (VLA), which covers
We have used the Australia Telescope Compact Array (ATCA) to search for emission from the $4_{-1} rightarrow 3_{0}E$ transition of methanol (36.2 GHz) towards the center of the nearby starburst galaxy NGC253. Two regions of emission were detected, of
In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing moder