ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure effects on superconducting properties of single-crystalline Co doped NaFeAs

243   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resistivity and magnetic susceptibility measurements under external pressure were performed on single-crystals NaFe1-xCoxAs (x=0, 0.01, 0.028, 0.075, 0.109). The maximum Tc enhanced by pressure in both underdoped and optimally doped NaFe1-xCoxAs is the same, as high as 31 K. The overdoped sample with x = 0.075 also shows a positive pressure effect on Tc, and an enhancement of Tc by 13 K is achieved under pressure of 2.3 GPa. All the superconducting samples show large positive pressure coefficient on superconductivity, being different from Ba(Fe1-xCox)2As2. However, the superconductivity cannot be induced by pressure in heavily overdoped non-superconducting NaFe0.891Co0.109As. These results provide evidence for that the electronic structure is much different between superconducting and heavily overdoped non-superconducting NaFe1-xCoxAs, being consistent with the observation by angle-resolved photoemission spectroscopy.



قيم البحث

اقرأ أيضاً

We report an x-ray emission spectroscopy (XES) study of the local fluctuating magnetic moment ($mu_{bare}$) in $mathrm{NaFe_{1-x}Co_{x}As}$ and $mathrm{NaFe_{1-x}Cu_{x}As}$. In NaFeAs, the reduced height of the As ions induces a local magnetic moment higher than $mathrm{Ba_2As_2}$, despite lower T$_N$ and ordered magnetic moment. As NaFeAs is doped with Co $mu_{bare}$ is slightly reduced, whereas Cu doping leaves it unaffected, indicating a different doping mechanism: based on electron counting for Co whereas impurity scattering dominates in the case of Cu. Finally, we observe an increase of $mu_{bare}$ with temperature in all samples as observed in electron- and hole-doped $mathrm{BaFe_2As_2}$. Since both Co and Cu doping display superconductivity, our findings demonstrate that the formation of Cooper pairs is not connected with the complete loss of fluctuating paramagnetic moments.
In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe2As2 system, Pr doped and Pr,Co co-doped CaFe2As2 single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with Tc1 = 25~42 K, and Tc2 < 16 K, suggesting that (Ca,RE)Fe2As2 system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ~400{deg}C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ~400{deg}C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400{deg}C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below Tc2 and high Jc values of 104~105 Acm-2 at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe2As2 phase occurred below Tc2. On the contrary, the superconducting volume fraction above Tc2 was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.
We report anisotropic dc magnetic susceptibility $chi(T)$, electrical resistivity $rho(T)$, and heat capacity $C(T)$ measurements on the single crystals of CaFe$_{2-x}$Co$_x$As$_2$ for $x$ = 0 and 0.06. Large sized single crystals were grown by the h igh temperature solution method with Sn as the solvent. For the pure compound with $x$ = 0, a high temperature transition at 170 K is observed which is attributed to a combined spin density wave (SDW) ordering and a structural phase transition. On the other hand, for the Co-doped samples for $x$ = 0.06, the SDW transition is suppressed while superconductivity is observed at $simeq$17 K. The superconducting transition has been confirmed from the magnetization and electrical resistivity studies. The $^{57}$Fe Mossbauer spectrum in CaFe$_2$As$_2$ indicates that the SDW ordering is incommensurate. In the Co-doped sample, a prominent paramagnetic line at 4.2 K is observed indicating a weakening of the SDW state.
152 - V. K. Maurya , R. Jha , Shruti 2015
We report on the impact of hydrostatic pressure on the superconductivity of optimally (Indium) doped SnTe which is established to be derived from a topological crystalline insulating phase. Single crystals of Sn1-xInxTe were synthesized by a modified Bridgman method that exhibited maximum superconducting Tc of 4.4 K for x= 0.5. Hydrostatic pressure upto 2.5 GPa was applied on the crystals of Sn0.5In0.5Te and electrical resistivity as a function of temperature and pressure was measured. We observed decrease in onset superconducting transition temperature from 4.4 K to 2.8 K on increasing pressure from ambient to 2.5 GPa. The normal state resistivity also decreased abruptly by an order of magnitude at 0.5 GPa but for higher pressures, the same decreased marginally. From onset, offset and zero resistivity values, dTc/dP of -0.6K/GPa was confirmed. The low temperature normal state resistivity followed T^2 dependence suggesting Fermi liquid behaviour both for ambient and high pressure data. This increase in metallic characteristics accompanied by normal state Fermi liquid behaviour is in accordance with a dome structure for Tc variation with varying carrier concentration.
187 - S. T. Cui , S. Y. Zhu , A. F. Wang 2012
Using angle-resolved photoemission spectroscopy, we studied the electronic structure of NaFe$_{1-x}$Co$_x$As from an optimally doped superconducting compound ($x=0.028$) to a heavily overdoped non-superconducting one ($x=0.109$). Similar to the case of 122 type iron pnictides, our data suggest that Co dopant in NaFe$_{1-x}$Co$_x$As supplies extra charge carriers and shifts the Fermi level accordingly. In the $x=0.109$ compound, the hole-like bands around the zone center $Gamma$ move to deeper binding energies and an electron pocket appears instead. The overall band renormalization remains basically the same throughout the doping range we studied, suggesting that the local magnetic/electronic correlations are not affected by carrier doping. We speculate that a balance between itinerant properties of mobile carriers and local interactions may play an important role for the superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا