ﻻ يوجد ملخص باللغة العربية
We consider the simulation of non-abelian gauge potentials in ultracold atom systems with atom-field interaction in the $Lambda$ configuration where two internal states of an atom are coupled to a third common one with a detuning. We find the simulated non-abelian gauge potentials can have the same structures as those simulated in the tripod configuration if we parameterize Rabi frequencies properly, which means we can design spin-orbit coupling simulation schemes based on those proposed in the tripod configuration. We show the simulated spin-orbit coupling in the $Lambda$ configuration can only be of a form similar to $p_{x}sigma_{y}$ even when the Rabi frequencies are not much smaller than the detuning.
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where
Motivated by the recent experimental success in realizing synthetic spin-orbit coupling in ultracold atomic systems, we consider N-component atoms coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the case, referred to here a
Cold atoms with laser-induced spin-orbit (SO) interactions provide promising platforms to explore novel quantum physics, in particular the exotic topological phases, beyond natural conditions of solids. The past several years have witnessed important
The Zitterbewegung effect in spin-orbit coupled spin-1 cold atoms is investigated in the presence of the Zeeman field and a harmonic trap. It is shown that the Zeeman field and the harmonic trap have significant effect on the Zitterbewegung oscillato
We propose the use of optical lattice clocks operated with fermionic alkaline-earth-atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation when atoms are allowed to tunnel a