ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation and control of wrinkles in graphene by the wedging transfer method

96   0   0.0 ( 0 )
 نشر من قبل Victor Calado
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of wrinkles in graphene upon wet transfer onto a target substrate, whereby draining of water appears to play an important role. We are able to control the orientation of the wrinkles by tuning the surface morphology. Wrinkles are absent in flakes transferred to strongly hydrophobic substrates, a further indication of the role of the interaction of water with the substrate in wrinkle formation. The electrical and structural integrity of the graphene is not affected by the wrinkles, as inferred from Raman measurements and electrical conductivity measurements.



قيم البحث

اقرأ أيضاً

We report a versatile water-based method for transferring nanostructures onto surfaces of various shapes and compositions. The transfer occurs through the intercalation of a layer of water between a hydrophilic substrate and a hydrophobic nanostructu re (for example, graphene flakes, carbon nanotubes, metallic nanostructures, quantum dots, etc) locked within a hydrophobic polymer thin film. As a result, the film entrapping the nanostructure is lifted off and floats at the air-water interface. The nanostructure can subsequently be deposited onto a target substrate by the removal of the water and the dissolution of the polymeric film. We show examples where graphene flakes and patterned metallic nanostructures are precisely transferred onto a specific location on a variety of patterned substrates, even on top of curved objects such as microspheres. The method is simple to use, fast, and does not require advanced equipment.
Wrinkling is a ubiquitous phenomenon in two-dimensional membranes. In particular, in the large-scale growth of graphene on metallic substrates, high densities of wrinkles are commonly observed. Despite their prevalence and potential impact on large-s cale graphene electronics, relatively little is known about their structural morphology and electronic properties. Surveying the graphene landscape using atomic force microscopy, we found that wrinkles reach a certain maximum height before folding over. Calculations of the energetics explain the morphological transition, and indicate that the tall ripples are collapsed into narrow standing wrinkles by van der Waals forces, analogous to large-diameter nanotubes. Quantum transport calculations show that conductance through these collapsed wrinkle structures is limited mainly by a density-of-states bottleneck and by interlayer tunneling across the collapsed bilayer region. Also through systematic measurements across large numbers of devices with wide folded wrinkles, we find a distinct anisotropy in their electrical resistivity, consistent with our transport simulations. These results highlight the coupling between morphology and electronic properties, which has important practical implications for large-scale high-speed graphene electronics.
A transfer matrix method is developed for optical calculations of non-interacting graphene layers. Within the framework of this method, optical properties such as reflection, transmission and absorption for single-, double- and multi-layer graphene a re studied. We also apply the method to structures consisting of periodically arranged graphene layers, revealing well-defined photonic band structures and even photonic bandgaps. Finally, we discuss graphene plasmons and introduce a simple way to tune the plasmon dispersion.
Electron-electron interactions play a critical role in many condensed matter phenomena, and it is tempting to find a way to control them by changing the interactions strength. One possible approach is to place a studied system in proximity of a metal , which induces additional screening and hence suppresses electron interactions. Here, using devices with atomically-thin gate dielectrics and atomically-flat metallic gates, we measure the electron-electron scattering length in graphene and report qualitative deviations from the standard behavior. The changes induced by screening become important only at gate dielectric thicknesses of a few nm, much smaller than a typical separation between electrons. Our theoretical analysis agrees well with the scattering rates extracted from measurements of electron viscosity in monolayer graphene and of umklapp electron-electron scattering in graphene superlattices. The results provide a guidance for future attempts to achieve proximity screening of many-body phenomena in two-dimensional systems.
It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance and emph{tune} the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange on doping and electron relaxation time is analyzed in the near infra-red within the framework of fluctuational electrodynamics. The dominant contribution to heat transfer can be controlled to arise from either interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene sheets in resonance, with orders-of-magnitude enhancement (e.g. $10^2$ to $10^3$ for separations between $0.1mu m$ to $10nm$) over the Stefan-Boltzmann law, known as the far field limit. Strong, tunable, near-field transfer offers the promise of an externally controllable thermal switch as well as a novel hybrid graphene-graphene thermoelectric/thermophotovoltaic energy conversion platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا