ﻻ يوجد ملخص باللغة العربية
Motivated by the response pattern for property specifications and applications within flexible workflow management systems, we report upon an initial study of modal and mixed transition systems in which the must transitions are interpreted as must eventually, and in which implementations can contain may behaviors that are resolved at run-time. We propose Transition Systems with Responses (TSRs) as a suitable model for this study. We prove that TSRs correspond to a restricted class of mixed transition systems, which we refer to as the action-deterministic mixed transition systems. We show that TSRs allow for a natural definition of deadlocked and accepting states. We then transfer the standard definition of refinement for mixed transition systems to TSRs and prove that refinement does not preserve deadlock freedom. This leads to the proposal of safe refinements, which are those that preserve deadlock freedom. We exemplify the use of TSRs and (safe) refinements on a small medication workflow.
The majority of modern systems exhibit sophisticated concurrent behaviour, where several system components modify and observe the system state with fine-grained atomicity. Many systems (e.g., multi-core processors, real-time controllers) also exhibit
Partially Observable Markov Decision Process (POMDP) is widely used to model probabilistic behavior for complex systems. Compared with MDPs, POMDP models a system more accurate but solving a POMDP generally takes exponential time in the size of its s
A well-known problem in Petri net theory is to formalise an appropriate causality-based concept of process or run for place/transition systems. The so-called individual token interpretation, where tokens are distinguished according to their causal hi
In this paper we introduce a notion of counterfactual causality in the Halpern and Pearl sense that is compositional with respect to the interleaving of transition systems. The formal framework for reasoning on what caused the violation of a safety p
We propose a way of reasoning about minimal and maximal values of the weights of transitions in a weighted transition system (WTS). This perspective induces a notion of bisimulation that is coarser than the classic bisimulation: it relates states tha