ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating SZ intensity maps of giant AGN cocoons

344   0   0.0 ( 0 )
 نشر من قبل Dmitry Prokhorov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform relativistic hydrodynamic simulations of the formation and evolution of AGN cocoons produced by very light powerful jets. We calculate the intensity maps of the Sunyaev-Zeldovich (SZ) effect at high frequencies for the simulated AGN cocoons using the relativistically correct Wright formalism. Our fully relativistic calculations demonstrate that the contribution from the high temperature gas (kb Te ~ 100 keV) to the SZ signal from AGN cocoons at high frequencies is stronger than that from the shocked ambient intercluster medium owing to the fact that the relativistic spectral functions peak at these temperature values. We present simulations of the SZ effect from AGN cocoons at various frequencies, and demonstrate that SZ observations at 217 GHz and at higher frequencies, such as 857 GHz, will provide us with knowledge about the dynamically-dominant component of AGN cocoons.



قيم البحث

اقرأ أيضاً

Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a $2.6, {rm Gpc / h}$ box with $2048^3$ partic les (particle mass $1.6 times 10^{11}, {rm M_odot / h}$). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation ($10^{8}, {rm M_odot / h} < M_{rm halo} < 10^{13}, {rm M_odot / h}$), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 < z < 0.9 in redshift bins of width $Delta z approx 0.05$ and cover a quarter of the sky at an angular resolution of about 7. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.
94 - Ruiyu Zhang , Fulai Guo 2020
The Fermi bubbles are two giant bubbles in gamma rays lying above and below the Galactic center (GC). Despite numerous studies on the bubbles, their origin and emission mechanism remain elusive. Here we use a suite of hydrodynamic simulations to stud y the scenario where the cosmic rays (CRs) in the bubbles are mainly accelerated at the forward shocks driven by a pair of opposing jets from Sgr A*. We find that an active galactic nucleus (AGN) jet event happened $5-6$ Myr ago can naturally reproduce the bilobular morphology of the bubbles, and the postshock gas temperature in the bubbles is heated to $sim0.4$ keV, consistent with recent X-ray observations. The forward shocks compress the hot halo gas, and at low latitudes, the compressed gas shows an X-shaped structure, naturally explaining the biconical X-ray structure in the ROSAT 1.5 keV map in both morphology and X-ray surface brightness. CR acceleration is most efficient in the head regions of the bubbles during the first 2 Myrs. The opposing jets release a total energy of $sim 10^{55}$ erg with an Eddington ratio of $sim 10^{-3}$, which falls well in the range of the hot accretion flow mode for black holes. Our simulations further show that the forward shocks driven by spherical winds at the GC typically produce bubbles with much wider bases than observed, and could not reproduce the biconical X-ray structure at low latitudes. This suggests that starburst or AGN winds are unlikely the origin of the bubbles in the shock scenario.
123 - M. L. Lister 2017
We present 5321 milliarcsecond-resolution total intensity and linear polarization maps of 437 active galactic nuclei (AGNs) obtained with the VLBA at 15 GHz as part of the MOJAVE survey, and also from the NRAO data archive. The former is a long-term program to study the structure and evolution of powerful parsec-scale outflows associated with AGNs. The targeted AGNs are drawn from several flux-limited radio and gamma-ray samples, and all have correlated VLBA flux densities greater than about 50 mJy at 15 GHz. Approximately 80% of these AGNs are associated with gamma-ray sources detected by the Fermi LAT instrument. The vast majority were observed with the VLBA on 5 to 15 occasions between 1996 January 19 and 2016 December 26, at intervals ranging from a month to several years, with the most typical sampling interval being six months. A detailed analysis of the linear and circular polarization evolution of these AGN jets are presented in other papers in this series.
The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACTs first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiments window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zeldovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.
The 21-cm intensity mapping (IM) of neutral hydrogen (HI) is a promising tool to probe the large-scale structures. Sky maps of 21-cm intensities can be highly contaminated by different foregrounds, such as Galactic synchrotron radiation, free-free em ission, extragalactic point sources, and atmospheric noise. We here present a model of foreground components and a method of removal, especially to quantify the potential of Five-hundred-meter Aperture Spherical radio Telescope (FAST) for measuring HI IM. We consider 1-year observational time with the survey area of $20,000,{rm deg}^{2}$ to capture significant variations of the foregrounds across both the sky position and angular scales relative to the HI signal. We first simulate the observational sky and then employ the Principal Component Analysis (PCA) foreground separation technique. We show that by including different foregrounds, thermal and $1/f$ noises, the value of the standard deviation between reconstructed 21-cm IM map and the input pure 21-cm signal is $Delta T = 0.034,{rm mK}$, which is well under control. The eigenmode-based analysis shows that the underlying HI eigenmode is just less than $1$ per cent level of the total sky components. By subtracting the PCA cleaned foreground+noise map from the total map, we show that PCA method can recover HI power spectra for FAST with high accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا