ترغب بنشر مسار تعليمي؟ اضغط هنا

The phonon dispersion relation of a Bose-Einstein condensate

124   0   0.0 ( 0 )
 نشر من قبل Jeff Steinhauer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the oscillations of a standing wave of phonons in a Bose-Einstein condensate, thus obtaining the dispersion relation. We present the technique of short Bragg pulses, which stimulates the standing wave. The subsequent oscillations are observed in situ. It is seen that the phonons undergo a 3D to 1D transition, when their wavelength becomes longer than the transverse radius of the condensate. The 1D regime contains an inflection point in the dispersion relation, which should decrease the superfluid critical velocity according to the Landau criterion. The inflection point also represents a minimum in the group velocity, although the minimum is not deep enough to result in a roton. The 3D-1D transition also results in an increase in the lifetime of the standing-wave oscillations, and a breakdown of the local density approximation. In addition, the static structure factor is measured in the long-wavelength regime. The measurements are enabled by the high sensitivity of the new technique.



قيم البحث

اقرأ أيضاً

Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscilla tions in the condensate, and we derive using field theory an effective Schrodinger equation describing this for arbitrarily strong impurity-boson interaction. We furthermore compare with Quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments and describe a procedure to probe their properties.
132 - Ofir E. Alon 2018
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposi te when computed at the many-body and mean-field levels of theory. This is despite the system being $100%$ condensed, and the respective energies per particle and densities per particle to coincide.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
We realized a quantum geometric charge pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global -- topological -- prop erties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits non-quantized charge pumping set by local -- geometrical -- properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wavepackets position in each unit cell, i.e., the polarization.
We have measured the effect of dipole-dipole interactions on the frequency of a collective mode of a Bose-Einstein condensate. At relatively large numbers of atoms, the experimental measurements are in good agreement with zero temperature theoretical predictions based on the Thomas Fermi approach. Experimental results obtained for the dipolar shift of a collective mode show a larger dependency to both the trap geometry and the atom number than the ones obtained when measuring the modification of the condensate aspect ratio due to dipolar forces. These findings are in good agreement with simulations based on a gaussian ansatz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا