ترغب بنشر مسار تعليمي؟ اضغط هنا

Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti_{1-x}Ta_xO_2 (x~0.05) thin films

124   0   0.0 ( 0 )
 نشر من قبل Ariando
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report room-temperature ferromagnetism in highly conducting transparent anatase Ti1-xTaxO2 (x~0.05) thin films grown by pulsed laser deposition on LaAlO3 substrates. Rutherford backscattering spectrometry (RBS), x-ray diffraction (XRD), proton induced x-ray emission (PIXE), x-ray absorption spectroscopy (XAS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) indicated negligible magnetic contaminants in the films. The presence of ferromagnetism with concomitant large carrier densities was determined by a combination of superconducting quantum interference device (SQUID) magnetometry, electrical transport measurements, soft x-ray magnetic circular dichroism (SXMCD), XAS, and optical magnetic circular dichroism (OMCD) and was supported by first-principle calculations. SXMCD and XAS measurements revealed a 90% contribution to ferromagnetism from the Ti ions and a 10% contribution from the O ions. RBS/channelling measurements show complete Ta substitution in the Ti sites though carrier activation was only 50% at 5% Ta concentration implying compensation by cationic defects. The role of Ti vacancy and Ti3+ was studied via XAS and x-ray photoemission spectroscopy (XPS) respectively. It was found that in films with strong ferromagnetism, the Ti vacancy signal was strong while Ti3+ signal was absent. We propose (in the absence of any obvious exchange mechanisms) that the localised magnetic moments, Ti vacancy sites, are ferromagnetically ordered by itinerant carriers. Cationic-defect-induced magnetism is an alternative route to ferromagnetism in wide-band-gap semiconducting oxides without any magnetic elements.



قيم البحث

اقرأ أيضاً

We have measured magnetic susceptibility and resistivity of Sr$_{1-x}$Y$_x$CoO$_{3-delta}$ ($x=$ 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3, and 0.4), and have found that Sr$_{1-x}$Y$_x$CoO$_{3-delta}$ is a room temperature ferromagnet with a Curie temp erature of 335 K in a narrow compositional range of 0.2 $leq xleq$ 0.25. This is the highest transition temperature among perovskite Co oxides. The saturation magnetization for $x=$ 0.225 is 0.25 $mu_B$/Co at 10 K, which implies that the observed ferromagnetism is a bulk effect. We attribute this ferromagnetism to a peculiar Sr/Y ordering.
Pulsed laser deposited films of Co doped anatase TiO2 are examined for Co substitutionality, ferromagnetism, transport, magnetotransport and optical properties. Our results show limited solubility (up to ~ 2 %) of Co in the as-grown films and formati on of Co clusters thereafter. For Ti0.93Co0.07O2-d sample, which exhibits a Curie temperature (Tc) over 1180 K, we find the presence of 20-50 nm Co clusters as well as a small concentration of Co incorporated into the remaining matrix. After being subjected to the high temperature anneal during the first magnetization measurement, the very same sample shows a Tc ~ 650 K and almost full matrix incorporation of Co. This Tc is close to that of as-grown Ti0.99Co0.01O2-d sample (~ 700 K). The transport, magnetotransport and optical studies also reveal interesting effects of the matrix incorporation of Co. These results are indicative of an intrinsic Ti1-xCoxO2-d diluted magnetic semiconductor with Tc of about 650-700 K.
X-ray photoemission spectroscopy measurements were performed on thin-film samples of rutile Ti_{1-x}Co_{x}O_{2-delta} to reveal the electronic structure. The Co 2p core level spectra indicate that the Co ions take the high-spin Co 2+ configuration, c onsistent with substitution on the Ti site. The high spin state and the shift due to the exchange splitting of the conduction band suggest strong hybridization between carriers in the Ti 3d t2g band and the t2g states of the high-spin Co 2+. These observations support the argument that room temperature ferromagnetism in Ti_{1-x}Co_{x}O_{2-delta} is intrinsic.
A detailed study of the magnetic and transport properties of Si1-xMnx (X = 0.35) films is presented. We observe the anomalous Hall effect (AHE) in these films up to room temperature. The results of the magnetic measurements and the AHE data are consi stent and demonstrate the existence of long-range ferromagnetic (FM) order in the systems under study. A correlation of the AHE and the magnetic properties of Si1-xMnx (X = 0.35) films with their conductivity and substrate type is shown. A theoretical model based on the idea of a two-phase magnetic material, in which molecular clusters with localized magnetic moments are embedded in the matrix of a weak itinerant ferromagnet, is discussed. The long-range ferromagnetic order at high temperatures is mainly due to the Stoner enhancement of the exchange coupling between clusters through thermal spin fluctuations (paramagnons) in the matrix. Theoretical predictions and experimental data are in good qualitative agreement.
Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity m odel calculations to study ferromagnetic Fe-substituted In$_2$O$_3$ films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا