ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical floating zone growth of high-quality Cu2MnAl single crystals

225   0   0.0 ( 0 )
 نشر من قبل Andreas Neubauer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the growth of large single-crystals of Cu2MnAl, a ferromagnetic Heusler compound suitable for polarizing neutron monochromators, by means of optical floating zone under ultra-high vacuum compatible conditions. Unlike Bridgman or Czochralsky grown Cu2MnAl, our floating zone grown single-crystals show highly reproducible magnetic properties and an excellent crystal quality with a narrow and homogeneous mosaic spread as examined by neutron diffraction. An investigation of the polarizing properties in neutron scattering suggests a high polarization efficiency, limited by the relatively small sample dimensions studied. Our study identifies optical floating zone under ultra-high vacuum compatible conditions as a highly reproducible method to grow high-quality single-crystals of Cu2MnAl.



قيم البحث

اقرأ أيضاً

Single crystals of PrNiO3 were grown under an oxygen pressure of 295 bar using a unique high-pressure optical-image floating zone furnace. The crystals, with volume in excess of 1 mm3, were characterized structurally using single crystal and powder X -ray diffraction. Resistivity, specific heat, and magnetic susceptibility were measured, all of which evidenced an abrupt, first order metal-insulator transition (MIT) at ~130 K, in agreement with previous literature reports on polycrystalline specimens. Temperature-dependent single crystal diffraction was performed to investigate changes through the MIT. Our study demonstrates the opportunity space for high fugacity, reactive environments for single crystal growth specifically of perovskite nickelates but more generally to correlated electron oxides.
The perovskite SrVO$_3$ is of interest for a variety of applications due to its simple metallic character and stability in reducing environments. Here we report the preparation of single-crystal SrVO$_3$ using the laser floating zone technique. Laue diffraction implies single domains ca. 30 mm in length. The stoichiometry of optimized crystals was found to be Sr$_{0.985}$VO$_{2.91}$ using inductively coupled plasma optical emission spectrometry and neutron powder diffraction analysis, with compositions adjustable depending on the crystal pulling rate. Heat capacity measurements from 2 to 300 K show variations with composition, attributable to a combination of impurity scattering and changes in phonon dynamics.Our results demonstrate the utility of the laser floating zone technique in preparing a range of materials, and our advances with SrVO$_3$ may help lead to applications including catalysis, transparent conducting oxides, thermionic emitters, and other electronic devices.
111 - H. B. Cao , Z. Y. Zhao , M. Lee 2015
High quality single crystals of BaFe$_{12}$O$_{19}$ were grown using the floating zone technique in flowing oxygen pressurized to 100 atm. Single crystal neutron diffraction was used to determine the nuclear and magnetic structure of BaFe$_{12}$O$_{1 9}$ at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe$^{3+}$ ions at the bipyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of the specific heat shows no anomaly associated with long range polar ordering in the temperature range from 1.90-300 K. The inverse dielectric permittivity, $1/varepsilon$, along the c-axis shows a $T^2$ temperature dependence between 10 K and 20 K, with a significantly reduced temperature dependence displayed below 10 K. Moreover, as the sample is cooled below 1.4 K there is an anomalous sharp upturn in $1/varepsilon$. These features resemble those of classic quantum paraelectrics such as SrTiO$_3$. The presence of the upturn in $1/varepsilon$ indicates that BaFe$_{12}$O$_{19}$ is a critical quantum paraelectric system with Fe$^{3+}$ ions involved in both magnetic and electric dipole formation.
Single crystal growth of {alpha}-Na$_x$MnO$_2$ (x = 0.90) is reported via the floating zone technique. The conditions required for stable growth and intergrowth-free crystals are described along with the results of trials under alternate growth atmos pheres. Chemical and structural characterizations of the resulting {alpha}-Na$_{0.90}$MnO$_2$ crystals are performed using ICP-AES, NMR, XANES, XPS, and neutron diffraction measurements. As a layered transition metal oxide with large ionic mobility and strong correlation effects, {alpha}-Na$_x$MnO$_2$ is of interest to many communities, and the implications of large volume, high purity, single crystal growth are discussed.
308 - J. S. Wen , Z. J. Xu , G. Y. Xu 2008
Effects of the growth velocity on the crystal growth behavior of Bi_2Sr_2Ca_1Cu_2O_x (Bi-2212) have been studied by floating zone technique. The results show that a necessary condition for obtaining large single crystals along the c-axis is that the solid-liquid interface of a growing rod maintains a stable planar growth front. The planar liquid-solid growth interface tends to break down into a cellular interface, while the growth velocity is higher than 0.25 mm/h. Single crystals of up to 50x7.2x7 mm3 along the a-, b- and caxes have been cut in a 7.2 mm diameter rod with optimum growth conditions. Tconset is 91 K measured by magnetic properties measurement system (MPMS) for as-grown crystals. Optical polarization microscope and neutron diffraction show that the quality of the single crystals is good.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا