ترغب بنشر مسار تعليمي؟ اضغط هنا

Anderson localization in metamaterials and other complex media

129   0   0.0 ( 0 )
 نشر من قبل Sergey Gredeskul
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review some recent (mostly ours) results on the Anderson localization of light and electron waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magneto-active optical structures, (iii) graphene superlattices, and (iv) nonlinear dielectric media. First, we demonstrate that left-handed metamaterials can significantly suppress localization of light and lead to an anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in the vicinity of the zero-epsilon or zero-mu frequencies for dispersive metamaterials. Remarkably, in disordered samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov exponent and reciprocal transmittance increment can differ from each other. Second, we study magneto-active multilayered structures, which exhibit nonreciprocal localization of light depending on the direction of propagation and on the polarization. At resonant frequencies or realizations, such nonreciprocity results in effectively unidirectional transport of light. Third, we discuss the analogy between the wave propagation through multilayered samples with metamaterials and the charge transport in graphene, which enables a simple physical explanation of unusual conductive properties of disordered graphene superlatices. We predict disorder-induced resonances of the transmission coefficient at oblique incidence of the Dirac quasiparticles. Finally, we demonstrate that an interplay of nonlinearity and disorder in dielectric media can lead to bistability of individual localized states excited inside the medium at resonant frequencies. This results in nonreciprocity of the wave transmission and unidirectional transport of light.



قيم البحث

اقرأ أيضاً

Wave localization is ubiquitous in disordered media -- from amorphous materials, where soft-mode localization is closely related to materials failure, to semi-conductors, where Anderson localization leads to metal-insulator transition. Our main under standing, though, is based on discrete models. Here, we provide a continuum perspective on the wave localization in two-phase disordered elastic media by studying the scalar wave equation with heterogeneous modulus and/or density. At low frequencies, soft modes arise as a result of disordered elastic modulus, which can also be predicted by the localization landscape. At high frequencies, Anderson-like localization occurs due to disorder either in density or modulus. For the latter case, we demonstrate how the vibrational dynamics changes from plane waves to diffusons with increasing frequency. Finally, we discuss the implications of our findings on the design of architected soft materials.
We study wave transmission through one-dimensional random nonlinear structures and predict a novel effect resulting from an interplay of nonlinearity and disorder. We reveal that, while weak nonlinearity does not change the typical exponentially smal l transmission in the regime of the Anderson localization, it affects dramatically the disorder-induced localized states excited inside the medium leading to {em bistable} and {em nonreciprocal} resonant transmission. Our numerical modelling shows an excellent agreement with theoretical predictions based on the concept of a high-Q resonator associated with each localized state. This offers a new way of all-optical light control employing statistically-homogeneous random media without regular cavities.
Hyperuniform disordered photonic materials (HDPM) are spatially correlated dielectric structures with unconventional optical properties. They can be transparent to long-wavelength radiation while at the same time have isotropic band gaps in another f requency range. This phenomenon raises fundamental questions concerning photon transport through disordered media. While optical transparency is robust against recurrent multiple scattering, little is known about other transport regimes like diffusive multiple scattering or Anderson localization. Here we investigate band gaps, and we report Anderson localization in two-dimensional stealthy HDPM using numerical simulations of the density of states and optical transport statistics. To establish a unified view, we propose a transport phase diagram. Our results show that, depending only on the degree of correlation, a dielectric material can transition from localization behavior to a bandgap crossing an intermediate regime dominated by tunneling between weakly coupled states.
We study two-dimensional tensorial elastic wave transport in densely fractured media and document transitions from propagation to diffusion and to localization/delocalization. For large fracture stiffness, waves are propagative at the scale of the sy stem. For small stiffness, multiple scattering prevails, such that waves are diffusive in disconnected fracture networks, and localized in connected ones with a strong multifractality of the intensity field. A reentrant delocalization is found in well-connected networks due to energy leakage via evanescent waves and cascades of mode conversion.
We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO$_{3}$ waveguides with randomly arran ged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا