ﻻ يوجد ملخص باللغة العربية
We study a version of the mathematical Ruijsenaars-Schneider model, and reinterpret it physically in order to describe the spreading with time of quantum wave packets in a system where multifractality can be tuned by varying a parameter. We compare different methods to measure the multifractality of wave packets, and identify the best one. We find the multifractality to decrease with time until it reaches an asymptotic limit, different from the mulifractality of eigenvectors, but related to it, as is the rate of the decrease. Our results could guide the study of experimental situations where multifractality is present in quantum systems.
We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model and a random m
We expose two scenarios for the breakdown of quantum multifractality under the effect of perturbations. In the first scenario, multifractality survives below a certain scale of the quantum fluctuations. In the other one, the fluctuations of the wave
The statistical properties of wave functions at the critical point of the spin quantum Hall transition are studied. The main emphasis is put onto determination of the spectrum of multifractal exponents $Delta_q$ governing the scaling of moments $<|ps
Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numerically and analytically (via mapping onto the classical percolation). It is shown that the index $eta$ characterizing the decay of wave functi
We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multif