ترغب بنشر مسار تعليمي؟ اضغط هنا

High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

168   0   0.0 ( 0 )
 نشر من قبل Daniela Hadasch
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high frequency peaked BL Lac PKS 2155-304 with a redshift of z=0.116 was discovered in 1997 in the very high energy (VHE, E >100GeV) gamma-ray range by the University of Durham Mark VI gamma-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the Southern Cherenkov observatory H.E.S.S. Detection from the Northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE gamma-emission. During the outburst, the VHE gamma-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 hours at large zenith angles. Here we present our studies on the behavior of the source after its extraordinary flare and an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. The averaged energy spectrum we derived has a spectral index of -3.5 +/- 0.2 above 400GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source extending the light curve derived by H.E.S.S. after the outburst. Finally, we find night-by-night variability with a maximal amplitude of a factor three to four and an intranight variability in one of the nights (MJD 53945) with a similar amplitude.



قيم البحث

اقرأ أيضاً

In this paper we present multiband optical polarimetric observations of the VHE blazar PKS 2155-304 made simultaneously with a H.E.S.S./Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the dataset allowed us to study in detail the temporal evolution of the emission and we found that the particle acceleration timescales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarised mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large scale field is locally organised by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Axion-like particles are hypothetical new light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ax ion-like particles can modify the energy spectrum of the gamma rays. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac PKS 2155-304 are used to derive conservative upper limits on the strength of the axion-like particle coupling to photons. This study gives rise to the first exclusions on axion-like particles from gamma-ray astronomy. The derived constraints apply to both light pseudo-scalar and scalar bosons that couple to the electromagnetic field.
The High Energy Stereoscopic System (H.E.S.S.) has observed the high-frequency peaked BL Lac object PKS2155-304 in 2003 between October 19 and November 26 in Very High Energy (VHE) gamma-rays (E>160 GeV for these observations). Observations were carr ied out simultaneously with the Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer satellite (RXTE), the Robotic Optical Transient Search Experiment (ROTSE) and the Nancay decimetric radiotelescope (NRT). Intra-night variability is seen in the VHE band, the source being detected with a high significance on each night it was observed. Variability is also found in the X-ray and optical bands on kilosecond timescales, along with flux-dependent spectral changes in the X-rays. The average H.E.S.S. spectrum shows a very soft power law shape with a photon index of 3.37+/-0.07(stat)+/-0.10(sys). The energy outputs in the 2-10 keV and in the VHE gamma-ray range are found to be similar, with the X-rays and the optical fluxes at a level comparable to some of the lowest historical measurements, indicating that PKS2155-304 was in a low or quiescent state during the observations. Both a leptonic and a hadronic model are used to derive source parameters from these observations.
Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z = 0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, $g_{gamma a} < 2.1times 10^{-11}$ GeV$^{-1}$ for an ALP mass between 15 neV and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic field.
Time variability of the photon flux is a known feature of active galactic nuclei (AGN) and in particular of blazars. The high frequency peaked BL Lac (HBL) object PKS 2155-304 is one of the brightest sources in the TeV band and has been monitored reg ularly with different instruments and in particular with the H.E.S.S. experiment above 200 GeV for more than 11 years. These data together with the observations of other instruments and monitoring programs like SMARTS (optical), Swift-XRT/RXTE/XMM-Newton (X-ray) and Fermi-LAT (100 MeV < E < 300 GeV) are used to characterize the variability of this object in the quiescent state over a wide energy range. Variability studies are made by looking at the lognormality of the light curves and at the fractional root mean square (rms) variability Fvar in several energy bands. Lognormality is found in every energy range and the evolution of Fvar with the energy shows a similar increase both in X-rays and in TeV bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا