ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of optical candidate supernova remnants in Sagittarius

140   0   0.0 ( 0 )
 نشر من قبل Panayotis Boumis
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Alikakos




اسأل ChatGPT حول البحث

During an [O III] survey for planetary nebulae, we identified a region in Sagittarius containing several candidate Supernova Remnants and obtained deep optical narrow-band images and spectra to explore their nature. The images of the unstudied area have been obtained in the light of Halpha+[N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4x1.0 deg^2 where filamentary and diffuse emission was discovered, suggesting the existence of more than one supernova remnants (SNRs) in the area. Deep long slit spectra were also taken of eight different regions. Both the flux calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting their association, while the WISE infrared emission found in the area at 12 and 22 micron marginally correlates with the optical. The presence of the [O III] emission line in one of the candidate SNRs suggests shock velocities into the interstellar clouds between 120 and 200 km/s, while the absence in the other indicates slower shock velocities. For all candidate remnants the [S II] 6716/6731 ratio indicates electron densities below 240 cm^{-3}, while the Halpha emission has been measured to be between 0.6 to 41x10^{-17} erg/s/cm^2/arcsec^2. The existence of eight pulsars within 1.5deg away from the center of the candidate SNRs also supports the scenario of many SNRs in the area as well as that the detected optical emission could be part of a number of supernovae explosions.



قيم البحث

اقرأ أيضاً

139 - P. Frank Winkler 2021
Using a combination of ground-based and HST imaging, we have constructed a catalog of 179 supernova remnants (SNRs) and SNR candidates in the nearby spiral galaxy M51. Follow-up spectroscopy of 66 of the candidates confirms 61 of these as SNRs, and s uggests that the vast majority of the unobserved objects are SNRs as well. A total of 55 of the candidates are coincident with (mostly soft) X-ray sources identified in deep Chandra observations of M51; searching the positions of other soft X-ray sources resulted in several additional possible optical candidates. There are 16 objects in the catalog coincident with known radio sources. None of the sources with spectra shows the high velocities (>500 km/s) characteristic of young, ejecta-dominated SNRs like Cas A; instead, most if not all appear to be middle-aged SNRs. The general properties of the SNRs, size distribution and spectral characteristics, resemble those in other nearby spiral galaxies, notably M33, M83, and NGC6946, where similar samples exist. However, the spectroscopically observed [N II]:H{alpha} ratios appear to be significantly higher than in any of these other galaxies. Although we have explored various ideas to explain the high ratios in M51, none of the explanations appears to be satisfactory.
We present the Suzaku results on a new candidate of a supernova remnant (SNR) in the Sagittarius C region. We detected diffuse X-rays of an elliptical shape (G359.41-0.12) and a chimney-like structure (the Chimney), both of which were fitted with a t hin thermal the model of kBT ~1 keV temperature. The absorption columns are same between these two structures, indicating that both are located at the same distance in the same line of sight. The narrow band image and one-dimensional profile of S XV Kalpha at 2.45 keV show that the Chimney is emanating from G359.41-0.12. Therefore, these two sources are physically connected with each other. The sum of the thermal energies of the Chimney and G359.41-0.12 is estimated to be 1.4x10^50 erg, typical for a galactic SNR. G359.41-0.12 is likely to be a new SNR candidate and the Chimney is an associated outflow.
We performed three-dimensional magnetohydrodynamic simulations to study the evolution of a supernova remnant (SNR) in a turbulent neutral atomic interstellar medium. The media used as background shares characteristics with the Solar neighbourhood and the SNR has mass and energy similar to those of a Type Ia object. Our initial conditions consist of dense clouds in a diluted medium, with the main difference between simulations being the average magnitude of the magnetic field. We measured amplifications of the magnetic energy of up to 34$%$ and we generated synthetic maps that illustrate how the same object can show different apparent geometries and physical properties when observed through different lines of sight.
88 - K. Iwasawa 2021
We searched for X-ray supernova remnants (SNRs) in the starburst region of M82, using archival data from the Chandra X-ray Observatory with a total effective exposure time of 620 ks with an X-ray spectroscopic selection. Strong line-emission from Fe xxv at 6.7 keV is a characteristic spectral feature of hot, shocked gas of young SNRs and distinctive among the discrete sources in the region populated by X-ray binaries. We selected candidates using narrow-band imaging aimed at the line excess and identified six (and possibly a seventh) X-ray SNRs. Two previously known examples were recovered by our selection. Five of them have radio counterparts, including the radio supernova SN2008iz, which was discovered as a radio transient in 2008. It shows a hard X-ray spectrum with a blueshifted Fe K feature with v ~ -2700 km/s, both of which suggest its youth. The 4-8 keV luminosities of the selected SNRs are in the range of (0.3-3)e38 erg/s. We made a crude estimate of the supernova rate, assuming that more luminous SNRs are younger, and found 0.06 (0.03-0.13) /yr, in agreement with the supernova rates estimated by radio observations and the generally believed star formation rate of M82, although the validity of the assumption is questionable. A sum of the Fe xxv luminosity originating from the selected X-ray SNRs consists of half of the total Fe xxv luminosity observed in the central region of M82. We briefly discuss its implications for starburst winds and the Fe xxv emission in more luminous starburst galaxies.
206 - Daniel Dewey 2010
A supernova (SN) explosion drives stellar debris into the circumstellar material (CSM) filling a region on a scale of parsecs with X-ray emitting plasma. The velocities involved in supernova remnants (SNRs), thousands of km/s, can be directly measure d with medium and high-resolution X-ray spectrometers and add an important dimension to our understanding of the last stages of the progenitor, the explosion mechanism, and the physics of strong shocks. After touching on the ingredients of SNR kinematics, I present a summary of the still-growing measurement results from SNR X-ray observations. Given the advances in 2D/3D hydrodynamics, data analysis techniques, and especially X-ray instrumentation, it is clear that our view of SNRs will continue to deepen in the decades ahead.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا