ترغب بنشر مسار تعليمي؟ اضغط هنا

Two bs in the Beehive: The Discovery of the First Hot Jupiters in an Open Cluster

124   0   0.0 ( 0 )
 نشر من قبل Samuel Quinn
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. N. Quinn




اسأل ChatGPT حول البحث

We present the discovery of two giant planets orbiting stars in Praesepe (also known as the Beehive Cluster). These are the first known hot Jupiters in an open cluster and the only planets known to orbit Sun-like, main-sequence stars in a cluster. The planets are detected from Doppler shifted radial velocities; line bisector spans and activity indices show no correlation with orbital phase, confirming the variations are caused by planetary companions. Pr0201b orbits a V=10.52 late F dwarf with a period of 4.4264 +/- 0.0070 days and has a minimum mass of 0.540 +/- 0.039 Mjup, and Pr0211b orbits a V=12.06 late G dwarf with a period of 2.1451 +/- 0.0012 days and has a minimum mass of 1.844 +/- 0.064 Mjup. The detection of 2 planets among 53 single members surveyed establishes a lower limit on the hot Jupiter frequency of 3.8 (+5.0)(-2.4) % in this metal-rich open cluster. Given the precisely known age of the cluster, this discovery also demonstrates that, in at least 2 cases, giant planet migration occurred within 600 Myr after formation. As we endeavor to learn more about the frequency and formation history of planets, environments with well-determined properties -- such as open clusters like Praesepe -- may provide essential clues to this end.



قيم البحث

اقرأ أيضاً

We report the discovery of two hot Jupiters using photometry from Campaigns 4 and 5 of the two-wheeled Kepler (K2) mission. K2-30b has a mass of $ 0.65 pm 0.14 M_J$, a radius of $1.070 pm 0.018 R_J$ and transits its G dwarf ($T_{eff} = 5675 pm 50$ K) , slightly metal rich ([Fe/H]$=+0.06pm0.04$ dex) host star in a 4.1 days circular orbit. K2-34b has a mass of $ 1.63 pm 0.12 M_J$, a radius of $1.38 pm 0.014 R_J$ and has an orbital period of 3.0 days in which it orbits a late F dwarf ($T_{eff} = 6149 pm 55$ K) solar metallicity star. Both planets were validated probabilistically and confirmed via precision radial velocity (RV) measurements. They have physical and orbital properties similar to the ones of the already uncovered population of hot Jupiters and are well-suited candidates for further orbital and atmospheric characterization via detailed follow-up observations. Given that the discovery of both systems was recently reported by other groups we take the opportunity of refining the planetary parameters by including the RVs obtained by these independent studies in our global analysis.
78 - G. Zhou , C.X. Huang , G.A. Bakos 2019
Wide field surveys for transiting planets are well suited to searching diverse stellar populations, enabling a better understanding of the link between the properties of planets and their parent stars. We report the discovery of HAT-P-69b (TOI 625.01 ) and HAT-P-70b (TOI 624.01), two new hot Jupiters around A stars from the HATNet survey which have also been observed by the Transiting Exoplanet Survey Satellite (TESS). HAT-P-69b has a mass of 3.58 +0.58/-0.58 MJup and a radius of 1.676 +0.051/-0.033 RJup, residing in a prograde 4.79-day orbit. HAT-P-70b has a radius of 1.87 +0.15/-0.10 RJup and a mass constraint of < 6.78 (3 sigma) MJup, and resides in a retrograde 2.74-day orbit. We use the confirmation of these planets around relatively massive stars as an opportunity to explore the occurrence rate of hot Jupiters as a function of stellar mass. We define a sample of 47,126 main-sequence stars brighter than Tmag=10 that yields 31 giant planet candidates, including 18 confirmed planets, 3 candidates, and 10 false positives. We find a net hot Jupiter occurrence rate of 0.41+/-0.10 % within this sample, consistent with the rate measured by Kepler for FGK stars. When divided into stellar mass bins, we find the occurrence rate to be 0.71+/-0.31% for G stars, 0.43+/-0.15% for F stars, and 0.26+/-0.11% for A stars. Thus, at this point, we cannot discern any statistically significant trend in the occurrence of hot Jupiters with stellar mass.
114 - S. N. Quinn 2013
We report the discovery of the first hot Jupiter in the Hyades open cluster. HD 285507b orbits a V=10.47 K4.5V dwarf ($M_* = 0.734 M_odot$; $R_* = 0.656 R_odot$) in a slightly eccentric ($e = 0.086^{+0.018}_{-0.019}$) orbit with a period of $6.0881^{ +0.0019}_{-0.0018}$ days. The induced stellar radial velocity corresponds to a minimum companion mass of $M_{rm p} sin{i} = 0.917 pm 0.033 M_{rm Jup}$. Line bisector spans and stellar activity measures show no correlation with orbital phase, and the radial velocity amplitude is independent of wavelength, supporting the conclusion that the variations are caused by a planetary companion. Follow-up photometry indicates with high confidence that the planet does not transit. HD 285507b joins a small but growing list of planets in open clusters, and its existence lends support to a planet formation scenario in which a high stellar space density does not inhibit giant planet formation and migration. We calculate the circularization timescale for HD 285507b to be larger than the age of the Hyades, which may indicate that this planets non-zero eccentricity is the result of migration via interactions with a third body. We also demonstrate a significant difference between the eccentricity distributions of hot Jupiters that have had time to tidally circularize and those that have not, which we interpret as evidence against Type II migration in the final stages of hot Jupiter formation. Finally, the dependence of the circularization timescale on the planetary tidal quality factor, $Q_{rm p}$, allows us to constrain the average value for hot Jupiters to be $log{Q_{rm p}} = 6.14^{+0.41}_{-0.25}$.
Open clusters have been the focus of several exoplanet surveys but only a few planets have so far been discovered. The emph{Kepler} spacecraft revealed an abundance of small planets around small, cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Keplers new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint ($mathrm{Kp = 15.5,mag}$) $mathrm{M3.0pm0.5}$ dwarf from K2s Campaign 5 with an effective temperature of $mathrm{3471 pm 124,K}$, approximately solar metallicity and a radius of $mathrm{0.402 pm 0.050 ,R_odot}$. We detected a transiting planet with a radius of $mathrm{3.47^{+0.78}_{-0.53} , R_oplus}$ and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging and archival survey images to rule out any false positive detection scenarios, validate the planet, and further characterize the system. The planets radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.
278 - Rosalba Perna 2010
Hot Jupiter atmospheres exhibit fast, weakly-ionized winds. The interaction of these winds with the planetary magnetic field generates drag on the winds and leads to ohmic dissipation of the induced electric currents. We study the magnitude of ohmic dissipation in representative, three-dimensional atmospheric circulation models of the hot Jupiter HD 209458b. We find that ohmic dissipation can reach or exceed 1% of the stellar insolation power in the deepest atmospheric layers, in models with and without dragged winds. Such power, dissipated in the deep atmosphere, appears sufficient to slow down planetary contraction and explain the typically inflated radii of hot Jupiters. This atmospheric scenario does not require a top insulating layer or radial currents that penetrate deep in the planetary interior. Circulation in the deepest atmospheric layers may actually be driven by spatially non-uniform ohmic dissipation. A consistent treatment of magnetic drag and ohmic dissipation is required to further elucidate the consequences of magnetic effects for the atmospheres and the contracting interiors of hot Jupiters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا