ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical Timescales in the Atmospheres of Highly Eccentric Exoplanets

166   0   0.0 ( 0 )
 نشر من قبل Channon Visscher
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Channon Visscher




اسأل ChatGPT حول البحث

Close-in exoplanets with highly eccentric orbits are subject to large variations in incoming stellar flux between periapse and apoapse. These variations may lead to large swings in atmospheric temperature, which in turn may cause changes in the chemistry of the atmosphere from higher CO abundances at periapse to higher CH4 abundances at apoapse. Here we examine chemical timescales for CO<->CH4 interconversion compared to orbital timescales and vertical mixing timescales for the highly eccentric exoplanets HAT-P-2b and CoRoT-10b. As exoplanet atmospheres cool, the chemical timescales for CO<->CH4 tend to exceed orbital and/or vertical mixing timescales, leading to quenching. The relative roles of orbit-induced thermal quenching and vertical quenching depend upon mixing timescales relative to orbital timescales. For both HAT-P-2b and CoRoT-10b, vertical quenching will determine disequilibrium CO<->CH4 chemistry at faster vertical mixing rates (Kzz > 10^7 cm^2 s^-1), whereas orbit-induced thermal quenching may play a significant role at slower mixing rates (Kzz < 10^7 cm^2 s^-1). The general abundance and chemical timescale results - calculated as a function of pressure, temperature, and metallicity - can be applied for different atmospheric profiles in order to estimate the quench level and disequilibrium abundances of CO and CH4 on hydrogen-dominated exoplanets. Observations of CO and CH4 on highly eccentric exoplanets may yield important clues to the chemical and dynamical properties of their atmospheres.



قيم البحث

اقرأ أيضاً

75 - Kazumasa Ohno , Xi Zhang 2019
Relatively long-period nonsynchronized planets---such as warm Jupiters---potentially retain the primordial rotation, eccentricity, and obliquity that might encapsulate information on planetary climate and formation processes. To date, there has not b een a systematic study on climate patterns on these planets that will significantly influence their observations. Here we investigate the atmospheric dynamics of nonsynchronized, fast-rotating exoplanets across various radiative timescales, eccentricities, and obliquities using a shallow water model. The dynamical pattern can be demarcated into five regimes in terms of radiative timescale $tau_{rm rad}$ and obliquity ${theta}$. An atmosphere with $tau_{rm rad}$ shorter than a planetary day usually exhibits a strong day--night temperature contrast and a day-to-night flow pattern. In the intermediate $tau_{rm rad}$ regime between a planetary day and a year, the atmosphere is dominated by steady temperature and eastward jet patterns for ${theta}$ < 18 deg but shows a strong seasonal variation for ${theta}$ > 18 deg because the polar region undergoes an intense heating at around the summer solstice. If $tau_{rm rad}$ is longer than a year, seasonal variation is very weak. In this regime, eastward jets are developed for ${theta}$ < 54 deg and westward jets are developed for ${theta}$ > 54 deg. These dynamical regimes are also applicable to the planets in eccentric orbits. The large effects of exoplanetary obliquities on circulation patterns might offer observational signatures, which will be investigated in Paper II of this study.
89 - Kazumasa Ohno , Xi Zhang 2019
Thermal light-curve analysis is a powerful approach to probe the thermal structures of exoplanetary atmospheres, which are greatly influenced by the planetary obliquity and eccentricity. Here we investigate the thermal light curves of eccentric-tilte d exoplanets across various radiative timescales, eccentricities, obliquities, and viewing geometries using results of shallow-water simulations presented in Ohno $&$ Zhang (2019). We also achieve an analytical theory of the thermal light curve that can explain general trends in the light curves of tilted exoplanets. For tilted planets in circular orbits, the orbital phase of the flux peak is largely controlled by either the flux from the hot spot projected onto the orbital plane or the pole heated at the summer solstice, depending on the radiative timescale $tau_{rm rad}$, planetary day $P_{rm orb}$, and obliquity $theta$. We find that tilted planets potentially produce the flux peak after the secondary eclipse when obliquity is $theta$ > 90 deg for the hot regime $tau_{rm rad}<P_{rm rot}$, or $theta>18$ deg for the cool regime ${tau}_{rm rad} > P_{rm rot}$. For tilted planets in eccentric orbits, the shape of the light curve is considerably influenced by the heating at the periapse. The flux peak occurring after the secondary eclipse can be used to distinguish tilted planets from nontilted planets when the periapse takes place before the secondary eclipse. Our results could help to constrain exoplanet obliquities in future observations.
Hydrogen cyanide (HCN) is a key feedstock molecule for the production of lifes building blocks. The formation of HCN in an N$_2$-rich atmospheres requires first that the triple bond between N$equiv$N be severed, and then that the atomic nitrogen find a carbon atom. These two tasks can be accomplished via photochemistry, lightning, impacts, or volcanism. The key requirements for producing appreciable amounts of HCN are the free availability of N$_2$ and a local carbon to oxygen ratio of C/O $geq 1$. We discuss the chemical mechanisms by which HCN can be formed and destroyed on rocky exoplanets with Earth-like N$_2$ content and surface water inventories, varying the oxidation state of the dominant carbon-containing atmospheric species. HCN is most readily produced in an atmosphere rich in methane (CH$_4$) or acetylene (C$_2$H$_2$), but can also be produced in significant amounts ($> 1$ ppm) within CO-dominated atmospheres. Methane is not necessary for the production of HCN. We show how destruction of HCN in a CO$_2$-rich atmosphere depends critically on the poorly-constrained energetic barrier for the reaction of HCN with atomic oxygen. We discuss the implications of our results for detecting photochemically produced HCN, for concentrating HCN on the planets surface, and its importance for prebiotic chemistry.
We describe the incorporation of polarized radiative transfer into the atmospheric radiative transfer modelling code VSTAR (Versatile Software for Transfer of Atmospheric Radiation). Using a vector discrete-ordinate radiative transfer code we are abl e to generate maps of radiance and polarization across the disc of a planet, and integrate over these to get the full-disc polarization. In this way we are able to obtain disc-resolved, phase-resolved and spectrally-resolved intensity and polarization for any of the wide range of atmopsheres that can be modelled with VSTAR. We have tested the code by reproducing a standard benchmark problem, as well as by comparing with classic calculations of the polarization phase curves of Venus. We apply the code to modelling the polarization phase curves of the hot Jupiter system HD 189733b. We find that the highest polarization amplitudes are produced with optically thick Rayleigh scattering clouds and these would result in a polarization amplitude of 27 ppm for the planetary signal seen in the combined light of the star and planet. A more realistic cloud model consistent with the observed transmission spectrum results is an amplitude of ~20 ppm. Decreasing the optical depth of the cloud, or making the cloud particles more absorbing, both have the effect of increasing the polarization of the reflected light but reducing the amount of reflected light and hence the observed polarization amplitude.
Exoplanets on eccentric orbits experience an incident stellar flux that can be markedly larger at periastron versus apoastron. This variation in instellation can lead to dramatic changes in atmospheric structure in regions of the atmosphere where the radiative and advective heating/cooling timescales are shorter than the orbital timescale. To explore this phenomenon, we develop a sophisticated one-dimensional (vertical) time-stepping atmospheric structure code, EGP+, capable of simulating the dynamic response of atmospheric thermal and chemical structure to time-dependent perturbations. Critically, EGP+ can efficiently simulate multiple orbits of a planet, thereby providing new opportunities for exoplanet modeling without the need for more computationally-expensive models. We make the simplifying assumption of cloud-free atmospheres, and apply our model to HAT-P-2b, HD~17156b, and HD~80606b, which are known to be on higher-eccentricity orbits. We find that for those planets which have Spitzer observations, our planet-to-star ratio predictions are roughly consistent with observations. However, we are unable to reproduce the observed peak offsets from periastron passage. Finally, we discuss promising pathways forward for adding new model complexity that would enable more detailed studies of clear and cloudy eccentric planets as well as worlds orbiting active host stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا