ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of measurement accuracies of the Higgs boson branching fractions in the International Linear Collider

163   0   0.0 ( 0 )
 نشر من قبل Hiroaki Ono
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise measurement of Higgs boson couplings is an important task for International Linear Collider (ILC) experiments and will facilitate the understanding of the particle mass generation mechanism. In this study, the measurement accuracies of the Higgs boson branching fractions to the $b$ and $c$ quarks and gluons, $Delta Br(Hto bbar{b},sim cbar{c},sim gg)/Br$, were evaluated with the full International Large Detector model (texttt{ILD_00}) for the Higgs mass of 120 GeV at the center-of-mass (CM) energies of 250 and 350 GeV using neutrino, hadronic and leptonic channels and assuming an integrated luminosity of $250 {rm fb^{-1}}$, and an electron (positron) beam polarization of -80% (+30%). We obtained the following measurement accuracies of the Higgs cross section times branching fraction ($Delta (sigma cdot Br)/sigma cdot Br$) for decay of the Higgs into $bbar{b}$, $cbar{c}$, and $gg$; as 1.0%, 6.9%, and 8.5% at a CM energy of 250 GeV and 1.0%, 6.2%, and 7.3% at 350 GeV, respectively. After the measurement accuracy of the cross section ($Deltasigma/sigma$) was corrected using the results of studies at 250 GeV and their extrapolation to 350 GeV, the derived measurement accuracies of the branching fractions ($Delta Br/Br$) to $bbar{b}$, $cbar{c}$, and gg were 2.7%, 7.3%, and 8.9% at a CM energy of 250 GeV and 3.6%, 7.2%, and 8.1% at 350 GeV, respectively.



قيم البحث

اقرأ أيضاً

The prospects for measuring the branching fraction of $H to mu ^+ mu ^-$ at the International Linear Collider (ILC) have been evaluated based on a full detector simulation of the International Large Detector (ILD) concept, considering centre-of-mass energies ($sqrt{s}$) of 250 GeV and 500 GeV. For both $sqrt{s}$ cases, the two final states $e^+ e^- to qoverline{q}H$ and $e^+ e^- to u overline{ u}H$ have been analyzed. For integrated luminosities of 2 ab$^{-1}$ at $sqrt{s} = 250$ GeV and 4 ab$^{-1}$ at $sqrt{s} = 500$ GeV, the combined precision on the branching fraction of $H to mu ^+ mu ^-$ is estimated to be 17{%}. The impact of the transverse momentum resolution for this analysis is also studied.
155 - Felix Sefkow 2014
The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).
The measurement of the Higgs coupling to W bosons is an important program at the international linear collider (ILC) to search for the anomaly in the coupling to the gauge bosons. We study the sensitivity of ILC to the Higgs anomalous coupling to W b osons by using ZH->vvWW* events. In this article, we report the status of the study.
The International Linear Collider (ILC) is now under consideration as the next global project in particle physics. In this report, we review of all aspects of the ILC program: the physics motivation, the accelerator design, the run plan, the proposed detectors, the experimental measurements on the Higgs boson, the top quark, the couplings of the W and Z bosons, and searches for new particles. We review the important role that polarized beams play in the ILC program. The first stage of the ILC is planned to be a Higgs factory at 250 GeV in the centre of mass. Energy upgrades can naturally be implemented based on the concept of a linear collider. We discuss in detail the ILC program of Higgs boson measurements and the expected precision in the determination of Higgs couplings. We compare the ILC capabilities to those of the HL-LHC and to those of other proposed e+e- Higgs factories. We emphasize throughout that the readiness of the accelerator and the estimates of ILC performance are based on detailed simulations backed by extensive RandD and, for the accelerator technology, operational experience.
The International Linear Collider (ILC) being proposed in Japan is an electron-positron linear collider with an initial energy of 250 GeV. The ILC accelerator is based on the technology of superconducting radio-frequency cavities. This technology has reached a mature stage in the European XFEL project and is now widely used. The ILC will start by measuring the Higgs properties, providing high-precision and model-independent determinations of its parameters. The ILC at 250 GeV will also search for direct new physics in exotic Higgs decays and in pair-production of weakly interacting particles. The use of polarised electron and positron beams opens new capabilities and scenarios that add to the physics reach. The ILC can be upgraded to higher energy, enabling precision studies of the top quark and measurement of the top Yukawa coupling and the Higgs self-coupling. The international -- including European -- interest for the project is very strong. Europe has participated in the ILC project since its early conception and plays a major role in its present development covering most of its scientific and technological aspects: physics studies, accelerator and detectors. The potential for a wide participation of European groups and laboratories is thus high, including important opportunities for European industry. Following decades of technical development, R&D, and design optimisation, the project is ready for construction and the European particle physics community, technological centers and industry are prepared to participate in this challenging endeavour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا