ﻻ يوجد ملخص باللغة العربية
This paper focuses on the restart strategy of CMA-ES on multi-modal functions. A first alternative strategy proceeds by decreasing the initial step-size of the mutation while doubling the population size at each restart. A second strategy adaptively allocates the computational budget among the restart settings in the BIPOP scheme. Both restart strategies are validated on the BBOB benchmark; their generality is also demonstrated on an independent real-world problem suite related to spacecraft trajectory optimization.
We propose a computationally efficient limited memory Covariance Matrix Adaptation Evolution Strategy for large scale optimization, which we call the LM-CMA-ES. The LM-CMA-ES is a stochastic, derivative-free algorithm for numerical optimization of no
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is widely accepted as a robust derivative-free continuous optimization algorithm for non-linear and non-convex optimization problems. CMA-ES is well known to be almost parameterless, meanin
Over the past few years the Angry Birds AI competition has been held in an attempt to develop intelligent agents that can successfully and efficiently solve levels for the video game Angry Birds. Many different agents and strategies have been develop
Common research tasks ask students to identify a correct answer and justify their answer choice. We propose expanding the array of research tasks to access different knowledge that students might have. By asking students to discuss answers they may n
Current implementations of pseudo-Boolean (PB) solvers working on native PB constraints are based on the CDCL architecture which empowers highly efficient modern SAT solvers. In particular, such PB solvers not only implement a (cutting-planes-based)