ترغب بنشر مسار تعليمي؟ اضغط هنا

On Topologically Massive Spin-2 Gauge Theories beyond Three Dimensions

149   0   0.0 ( 0 )
 نشر من قبل Yihao Yin
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate in which sense, at the linearized level, one can extend the 3D topologically massive gravity theory beyond three dimensions. We show that, for each k=1,2,3... a free topologically massive gauge theory in 4k-1 dimensions can be defined describing a massive spin-2 particle provided one uses a non-standard representation of the massive spin-2 state which makes use of a two-column Young tableau where each column is of height 2k-1. We work out the case of k=2, i.e. 7D, and show, by canonical analysis, that the model describes, unitarily, 35 massive spin-2 degrees of freedom. The issue of interactions is discussed and compared with the three-dimensional situation.



قيم البحث

اقرأ أيضاً

We consider general aspects of N=2 gauge theories in three dimensions, including their multiplet structure, anomalies and non-renormalization theorems. For U(1) gauge theories, we discuss the quantum corrections to the moduli space, and their relatio n to ``mirror symmetries of 3d N=4 theories. Mirror symmetry is given an interpretation in terms of vortices. For SU(N_c) gauge groups with N_f fundamental flavors, we show that, depending on the number of flavors, there are quantum moduli spaces of vacua with various phenomena near the origin.
141 - Bruno Bertrand CP3 2007
There exists a well-known duality between the Maxwell-Chern-Simons theory and the self-dual massive model in 2+1 dimensions. This dual description has been extended to topologically massive gauge theories (TMGT) in any dimension. This Letter introduc es an unconventional approach to the construction of this type of duality through a reparametrisation of the master theory action. The dual action thereby obtained preserves the same gauge symmetry structure as the original theory. Furthermore, the dual action is factorised into a propagating sector of massive gauge invariant variables and a sector with gauge variant variables defining a pure topological field theory. Combining results obtained within the Lagrangian and Hamiltonian formulations, a new completed structure for a gauge invariant dual factorisation of TMGT is thus achieved.
We study the relationship between three non-Abelian topologically massive gauge theories, viz. the naive non-Abelian generalization of the Abelian model, Freedman-Townsend model and the dynamical 2-form theory, in the canonical framework. Hamiltonian formulation of the naive non-Abelian theory is presented first. The other two non-Abelian models are obtained by deforming the constraints of this model. We study the role of the auxiliary vector field in the dynamical 2-form theory in the canonical framework and show that the dynamical 2-form theory cannot be considered as the embedded version of naive non-Abelian model. The reducibility aspect and gauge algebra of the latter models are also discussed.
129 - J. A. Gracey , I. Jack , C. Poole 2016
Recently, the existence of a candidate a-function for renormalisable theories in three dimensions was demonstrated for a general theory at leading order and for a scalar-fermion theory at next-to-leading order. Here we extend this work by constructin g the a-function at next-to-leading order for an N=2 supersymmetric Chern-Simons theory. This increase in precision for the a-function necessitated the evaluation of the underlying renormalization-group functions at four loops.
Using the off-shell formulation for ${mathcal N}=2$ conformal supergravity in four dimensions, we propose superconformal higher-spin multiplets of conserved currents and their associated unconstrained gauge prepotentials. The latter are used to const ruct locally superconformal chiral actions, which are demonstrated to be gauge invariant in arbitrary conformally flat backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا