ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient and Practical Stochastic Subgradient Descent for Nuclear Norm Regularization

154   0   0.0 ( 0 )
 نشر من قبل Haim Avron
 تاريخ النشر 2012
والبحث باللغة English
 تأليف Haim Avron




اسأل ChatGPT حول البحث

We describe novel subgradient methods for a broad class of matrix optimization problems involving nuclear norm regularization. Unlike existing approaches, our method executes very cheap iterations by combining low-rank stochastic subgradients with efficient incremental SVD updates, made possible by highly optimized and parallelizable dense linear algebra operations on small matrices. Our practical algorithms always maintain a low-rank factorization of iterates that can be conveniently held in memory and efficiently multiplied to generate predictions in matrix completion settings. Empirical comparisons confirm that our approach is highly competitive with several recently proposed state-of-the-art solvers for such problems.



قيم البحث

اقرأ أيضاً

130 - Poorya Mianjy , Raman Arora 2019
We give a formal and complete characterization of the explicit regularizer induced by dropout in deep linear networks with squared loss. We show that (a) the explicit regularizer is composed of an $ell_2$-path regularizer and other terms that are als o re-scaling invariant, (b) the convex envelope of the induced regularizer is the squared nuclear norm of the network map, and (c) for a sufficiently large dropout rate, we characterize the global optima of the dropout objective. We validate our theoretical findings with empirical results.
Large-scale machine learning training suffers from two prior challenges, specifically for nuclear-norm constrained problems with distributed systems: the synchronization slowdown due to the straggling workers, and high communication costs. In this wo rk, we propose an asynchronous Stochastic Frank Wolfe (SFW-asyn) method, which, for the first time, solves the two problems simultaneously, while successfully maintaining the same convergence rate as the vanilla SFW. We implement our algorithm in python (with MPI) to run on Amazon EC2, and demonstrate that SFW-asyn yields speed-ups almost linear to the number of machines compared to the vanilla SFW.
We consider the contextual bandit problem, where a player sequentially makes decisions based on past observations to maximize the cumulative reward. Although many algorithms have been proposed for contextual bandit, most of them rely on finding the m aximum likelihood estimator at each iteration, which requires $O(t)$ time at the $t$-th iteration and are memory inefficient. A natural way to resolve this problem is to apply online stochastic gradient descent (SGD) so that the per-step time and memory complexity can be reduced to constant with respect to $t$, but a contextual bandit policy based on online SGD updates that balances exploration and exploitation has remained elusive. In this work, we show that online SGD can be applied to the generalized linear bandit problem. The proposed SGD-TS algorithm, which uses a single-step SGD update to exploit past information and uses Thompson Sampling for exploration, achieves $tilde{O}(sqrt{T})$ regret with the total time complexity that scales linearly in $T$ and $d$, where $T$ is the total number of rounds and $d$ is the number of features. Experimental results show that SGD-TS consistently outperforms existing algorithms on both synthetic and real datasets.
Using the $ell_1$-norm to regularize the estimation of the parameter vector of a linear model leads to an unstable estimator when covariates are highly correlated. In this paper, we introduce a new penalty function which takes into account the correl ation of the design matrix to stabilize the estimation. This norm, called the trace Lasso, uses the trace norm, which is a convex surrogate of the rank, of the selected covariates as the criterion of model complexity. We analyze the properties of our norm, describe an optimization algorithm based on reweighted least-squares, and illustrate the behavior of this norm on synthetic data, showing that it is more adapted to strong correlations than competing methods such as the elastic net.
We study the generalization properties of the popular stochastic optimization method known as stochastic gradient descent (SGD) for optimizing general non-convex loss functions. Our main contribution is providing upper bounds on the generalization er ror that depend on local statistics of the stochastic gradients evaluated along the path of iterates calculated by SGD. The key factors our bounds depend on are the variance of the gradients (with respect to the data distribution) and the local smoothness of the objective function along the SGD path, and the sensitivity of the loss function to perturbations to the final output. Our key technical tool is combining the information-theoretic generalization bounds previously used for analyzing randomized variants of SGD with a perturbation analysis of the iterates.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا