ﻻ يوجد ملخص باللغة العربية
We propose a simple extension of the electroweak standard model based on the discrete $S_3$ symmetry that is capable of realizing a nearly minimal Fritzsch-type texture for the Dirac mass matrices of both charged leptons and neutrinos. This is achieved with the aid of additional $Z_5$ and $Z_3$ symmetries, one of which can be embedded in $U(1)_{B-L}$. Five complex scalar singlet fields are introduced in addition to the SM with right-handed neutrinos. Although more general, the modified texture of the model retains the successful features of the minimal texture without fine-tuning; namely, it accommodates the masses and mixing of the leptonic sector and relates the emergence of large leptonic mixing angles with the seesaw mechanism. For large deviations of the minimal texture, both quasidegenerate spectrum or inverted hierarchy are allowed for neutrino masses.
We consider the possibility of texture zeros in lepton mass matrices of the minimal left-right symmetric model (LRSM) where light neutrino mass arises from a combination of type I and type II seesaw mechanisms. Based on the allowed texture zeros in l
Several popular Ansatze of lepton mass matrices that contain texture zeros are confronted with current neutrino observational data. We perform a systematic $chi^2$-analysis in a wide class of schemes, considering arbitrary Hermitian charged lepton ma
We propose a model that all quark and lepton mass matrices have the same zero texture. Namely their (1,1), (1,3) and (3,1) components are zeros. The mass matrices are classified into two types I and II. Type I is consistent with the experimental data
We study lepton flavor models with the $S_4$ flavor symmetry. We construct simple models with smaller numbers of flavon fields and free parameters, such that we have predictions among lepton masses and mixing angles. The model with a $S_4$ triplet fl
It has been suggested that residual symmetries in the charged-lepton and neutrino mass matrices can possibly reveal the flavour symmetry group of the lepton sector. We review the basic ideas of this purely group-theoretical approach and discuss some