ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength Spectral Study of 3C 279 in the Internal Shock Scenario

617   0   0.0 ( 0 )
 نشر من قبل Manasvita Joshi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed 3C~279 in a gamma-ray flaring state in November 2008. We construct quasi-simultaneous spectral energy distributions (SEDs) of the source for the flaring period of 2008 and during a quiescent period in May 2010. Data have been compiled from observations with Fermi, Swift, RXTE, the VLBA, and various ground-based optical and radio telescopes. The objective is to comprehend the correspondence between the flux and polarization variations observed during these two time periods by carrying out a detailed spectral analyses of 3C~279 in the internal shock scenario, and gain insights into the role of intrinsic parameters and interplay of synchrotron and inverse Compton radiation processes responsible for the two states. As a first step, we have used a multi-slice time-dependent leptonic jet model, in the framework of the internal shock scenario, with radiation feedback to simulate the SED of 3C~279 observed in an optical high state in early 2006. We have used physical jet parameters obtained from the VLBA monitoring to guide our modeling efforts. We briefly discuss the effects of intrinsic parameters and various radiation processes in producing the resultant SED.



قيم البحث

اقرأ أيضاً

We extend our approach of modeling spectral energy distribution (SED) and lightcurves of blazars to include external Compton (EC) emission due to inverse Compton scattering of an external anisotropic target radiation field. We describe the time-depen dent impact of such seed photon fields on the evolution of multifrequency emission and spectral variability of blazars using a multi-zone time-dependent leptonic jet model, with radiation feedback, in the internal shock model scenario. We calculate accurate EC-scattered high-energy spectra produced by relativistic electrons throughout the Thomson and Klein-Nishina regimes. We explore the effects of varying the contribution of (1) a thermal Shakura-Sunyaev accretion disk, (2) a spherically symmetric shell of broad-line clouds, the broad line region (BLR), and (3) a hot infrared emitting dusty torus (DT), on the resultant seed photon fields. We let the system evolve to beyond the BLR and within the DT and study the manifestation of the varying target photon fields on the simulated SED and lightcurves of a typical blazar. The calculations of broadband spectra include effects of gamma-gamma absorption as gamma-rays propagate through the photon pool present inside the jet due to synchrotron and inverse Compton processes, but neglect gamma-gamma absorption by the BLR and DT photon fields outside the jet. Thus, our account of gamma-gamma absorption is a lower limit to this effect. Here, we focus on studying the impact of parameters relevant for EC processes on high-energy (HE) emission of blazars.
Quasar 3C 279 is known to exhibit episodes of optical polarization angle rotation. We present new, well-sampled optical polarization data for 3C 279 and introduce a method to distinguish between random and deterministic electric vector position angle (EVPA) variations. We observe EVPA rotations in both directions with different amplitudes and find that the EVPA variation shows characteristics of both random and deterministic cases. Our analysis indicates that the EVPA variation is likely dominated by a random process in the low brightness state of the jet and by a deterministic process in the flaring state.
131 - F. Tombesi 2013
We present a combined Suzaku and Swift BAT broad-band E=0.6-200keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R~0.2) cold reflection component from dis tant material. We constrain the continuum cutoff at E_c~150-200keV, which is in accordance with X-ray Comptonization corona models and supports claims that the jet emission is only dominant at much higher energies. Fe XXVI Lyalpha emission and absorption lines are also present in the first and second observations, respectively. The modelling and interpretation of the emission line is complex and we explore three possibilities. If originating from ionized disc reflection, this should be emitted at r_in> 50r_g or, in the lamp-post configuration, the illuminating source should be at a height of h> 30r_g over the black hole. Alternatively, the line could be modeled with a hot collisionally ionized plasma with temperature kT = 22.0^{+6.1}_{-3.2} keV or a photo-ionized plasma with logxi=4.52^{+0.10}_{-0.16} erg s^{-1} cm and column density N_H > 3x10^23 cm^{-2}. However, the first and second scenarios are less favored on statistical and physical grounds, respectively. The blue-shifted absorption line in the second observation can be modelled as an ultra-fast outflow (UFO) with ionization parameter logxi=4.47^{+0.76}_{-0.04} erg s^{-1} cm, column density N_H=(5.3^{+1.8}_{-1.3})x 10^{22} cm^{-2} and outflow velocity v_out = 0.104+/-0.006 c. Interestingly, the parameters of the photo-ionized emission model remarkably match those of the absorbing UFO. We suggest an outburst scenario in which an accretion disc wind, initially lying out of the line of sight and observed in emission, then crosses our view to the source and it is observed in absorption as a mildly-relativistic UFO.
Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ra y flares and they have attracted considerable attention, as they could allow one to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C279 is one of the most prominent examples showing this behaviour. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of 2008-2012. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. 3C279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth approx. 360 degrees rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. We conclude that during the two different optical flux states, two different processes govern the polarization variation, possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
89 - Raj Prince 2020
A multiwavelength temporal and spectral analysis of flares of 3C 279 during November 2017--July 2018 are presented in this work. Three bright gamma-ray flares were observed simultaneously in X-ray and Optical/UV along with a prolonged quiescent state . A harder-when-brighter trend is observed in both gamma-rays and X-rays during the flaring period. The gamma-ray light curve for all the flares are binned in one-day time bins and a day scale variability is observed. Variability time constrains the size and location of the emission region to 2.1$times$10$^{16}$ cm and 4.4$times$10$^{17}$ cm, respectively. The fractional variability reveals that the source is more than 100% variable in gamma-rays and it decreases towards the lower energy. A cross-correlation study of the emission from different wavebands is done using the textit{DCF} method, which shows a strong correlation between them without any time lags. The zero time lag between different wavebands suggest their co-spatial origin. This is the first time 3C 279 has shown a strong correlation between gamma-rays and X-rays emission with zero time lag. A single zone emission model was adopted to model the multiwavelength SEDs by using the publicly available code GAMERA. The study reveals that a higher jet power in electrons is required to explain the gamma-ray flux during the flaring state, as much as, ten times of that required for the quiescent state. However, more jet power in magnetic field has been observed during the quiescent state compared to the flaring state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا