ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the complexity of the Levy-walk nature of human mobility with a multi-scale cost/benefit model

163   0   0.0 ( 0 )
 نشر من قبل Nicola Scafetta
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nicola Scafetta




اسأل ChatGPT حول البحث

Probability distributions of human displacements has been fit with exponentially truncated Levy flights or fat tailed Pareto inverse power law probability distributions. Thus, people usually stay within a given location (for example, the city of residence), but with a non-vanishing frequency they visit nearby or far locations too. Herein, we show that an important empirical distribution of human displacements (range: from 1 to 1000 km) can be well fit by three consecutive Pareto distributions with simple integer exponents equal to 1, 2 and ($gtrapprox$) 3. These three exponents correspond to three displacement range zones of about 1 km $lesssim Delta r lesssim$ 10 km, 10 km $lesssim Delta r lesssim$ 300 km and 300 km $lesssim Delta r lesssim $ 1000 km, respectively. These three zones can be geographically and physically well determined as displacements within a city, visits to nearby cities that may occur within just one-day trips, and visit to far locations that may require multi-days trips. The incremental integer values of the three exponents can be easily explained with a three-scale mobility cost/benefit model for human displacements based on simple geometrical constrains. Essentially, people would divide the space into three major regions (close, medium and far distances) and would assume that the travel benefits are randomly/uniformly distributed mostly only within specific urban-like areas.



قيم البحث

اقرأ أيضاً

243 - M.C. Gonzalez , C.A. Hidalgo , 2008
Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved loc ation of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
The recent availability of digital traces generated by phone calls and online logins has significantly increased the scientific understanding of human mobility. Until now, however, limited data resolution and coverage have hindered a coherent descrip tion of human displacements across different spatial and temporal scales. Here, we characterise mobility behaviour across several orders of magnitude by analysing ~850 individuals digital traces sampled every ~16 seconds for 25 months with ~10 meters spatial resolution. We show that the distributions of distances and waiting times between consecutive locations are best described by log-normal distributions and that natural time-scales emerge from the regularity of human mobility. We point out that log-normal distributions also characterise the patterns of discovery of new places, implying that they are not a simple consequence of the routine of modern life.
Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning to disaster management. There are two common ways of quantifying the amount of travel between locations: by direct observations that often in volve privacy issues, e.g., tracking mobile phone locations, or by estimations from models. Typically, such models build on accurate knowledge of the population size at each location. However, when this information is not readily available, their applicability is rather limited. As mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is well predicted by a simple model based on the frequency of mobile phone calls between two locations and their geographical distance. We argue that the strength of the model comes from directly incorporating the social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid potential privacy problems.
We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time markovian walk g overned by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.
We introduce a basic model for human mobility that accounts for the different dynamics arising from individuals embarking on short trips (and returning to their home locations) and individuals relocating to a new home. The differences between the two modes of motion comes to light on contrasting two recent studies, one tracking the geographical location of dollar bills cite{brockmann}, the other that of mobile cell phones cite{gonzalez}. Trips introduce two characteristic time scales; the time between trips, $theta$, and the duration of each trip, $tau$, and relocations introduces a third time scale, $T$, for the time between relocations. In practice, $Tsim{rm years}$, $thetasim{rm months}$, and $tausim{rm days}$, so the three time scales are widely separated. Traditionally, studies incorporating human motion assume only a single mode, using a generic rate to account for all types of motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا