ترغب بنشر مسار تعليمي؟ اضغط هنا

The Optical SN 2012bz Associated with the Long GRB 120422A

129   0   0.0 ( 0 )
 نشر من قبل Andrea Melandri
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The association of Type Ic SNe with long-duration GRBs is well established. We endeavor, through accurate ground-based observational campaigns, to characterize these SNe at increasingly high redshifts. We obtained a series of optical photometric and spectroscopic observations of the Type Ic SN2012bz associated with the Swift long-duration GRB120422A (z=0.283) using the 3.6-m TNG and the 8.2-m VLT telescopes. The peak times of the light curves of SN2012bz in various optical filters differ, with the B-band and i-band light curves reaching maximum at ~9 and ~23 rest-frame days, respectively. The bolometric light curve has been derived from individual bands photometric measurements, but no correction for the unknown contribution in the near-infrared (probably around 10-15%) has been applied. Therefore, the present light curve should be considered as a lower limit to the actual UV-optical-IR bolometric light curve. This pseudo-bolometric curve reaches its maximum (Mbol = -18.56 +/- 0.06) at 13 +/- 1 rest-frame days; it is similar in shape and luminosity to the bolometric light curves of the SNe associated with z<0.2 GRBs and more luminous than those of SNe associated with XRFs. A comparison with the model generated for the bolometric light curve of SN2003dh suggests that SN2012bz produced only about 15% less 56Ni than SN2003dh, about 0.35 Msol. Similarly the VLT spectra of SN2012bz, after correction for Galactic extinction and for the contribution of the host galaxy, suggest comparable explosion parameters with those observed in SN2003dh (EK~3.5 x 10^52 erg, Mej~7 Msol) and a similar progenitor mass (~25-40 Msol). GRB120422A is consistent with the Epeak-Eiso and the EX,iso-Egamma,iso-E_peak relations. GRB120422A/SN2012bz shows the GRB-SN connection at the highest redshift so far accurately monitored both photometrically and spectroscopically.



قيم البحث

اقرأ أيضاً

At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with peak luminosities ($L_{rm iso} < 10^{48.5}~rm{erg,s}^{-1}$) substantially lower than the average of the more distant ones ($L_{rm iso} > 10^{49.5}~rm{erg,s}^{-1}$). The p roperties of several low-luminosity (low-$L$) GRBs indicate that they can be due to shock break-out, as opposed to the emission from ultrarelativistic jets. Owing to this, it is highly debated how both populations are connected, and whether there is a continuum between them. The burst at redshift $z=0.283$ from 2012 April 22 is one of the very few examples of intermediate-$L$ GRBs with a $gamma$-ray luminosity of $Lsim10^{48.9}~rm{erg,s}^{-1}$ that have been detected up to now. Together with the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-$L$ GRBs and the GRB-SN connection. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs at 6--10-m class telescopes, covering the time span of 37.3 days, and a multi-wavelength imaging campaign from radio to X-ray energies over a duration of $sim270$ days. Furthermore, we used a tuneable filter centred at H$alpha$ to map star formation in the host galaxy and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and incorporate spectral-energy-distribution fitting techniques to extract the properties of the host galaxy. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed the blast-wave to expand with an initial Lorentz factor of $Gamma_0sim60$, low for a high-$L$ GRB, and that the afterglow had an exceptional low peak luminosity-density of $lesssim2times10^{30}~rm{erg,s}^{-1},rm{Hz}^{-1}$ in the sub-mm. [Abridged]
127 - A. Melandri , E. Pian , V. DElia 2014
Long-duration gamma-ray bursts (GRBs) have been found to be associated with broad-lined type-Ic supernovae (SNe), but only a handful of cases have been studied in detail. Prompted by the discovery of the exceptionally bright, nearby GRB130427A (redsh ift z=0.3399), we aim at characterising the properties of its associated SN2013cq. This is the first opportunity to test directly the progenitors of high-luminosity GRBs. We monitored the field of the Swift long duration GRB130427A using the 3.6-m TNG and the 8.2-m VLT during the time interval between 3.6 and 51.6 days after the burst. Photometric and spectroscopic observations revealed the presence of the type Ic SN2013cq. Spectroscopic analysis suggests that SN2013cq resembles two previous GRB-SNe, SN1998bw and SN2010bh associated with GRB980425 and XRF100316D, respectively. The bolometric light curve of SN2013cq, which is significantly affected by the host galaxy contribution, is systematically more luminous than that of SN2010bh ($sim$ 2 mag at peak), but is consistent with SN1998bw. The comparison with the light curve model of another GRB-connected SN2003dh, indicates that SN2013cq is consistent with the model when brightened by 20%. This suggests a synthesised radioactive $^{56}$Ni mass of $sim 0.4 M_odot$. GRB130427A/SN2013cq is the first case of low-z GRB-SN connection where the GRB energetics are extreme ($E_{rm gamma, iso} sim 10^{54}$ erg). We show that the maximum luminosities attained by SNe associated with GRBs span a very narrow range, but those associated with XRFs are significantly less luminous. On the other hand the isotropic energies of the accompanying GRBs span 6 orders of magnitude (10$^{48}$ erg $< E_{rm gamma, iso} <$ 10$^{54}$ erg), although this range is reduced when corrected for jet collimation. The GRB total radiated energy is in fact a small fraction of the SN energy budget.
We present optical and near-infrared light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be $E_{gamma,i so}=6.4_{-1.0}^{+1.3}times10^{50}$erg (1keV-10MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed $griz$ light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves ~20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined Type Ic supernovae, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of ~21,000km s$^{-1}$. We construct a quasi-bolometric ($grizyJ$) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond $Delta t>40$d. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a $^{56}$Ni mass of $M_{mathrm{Ni}}=0.37pm0.01$M$_{odot}$, an ejecta mass of $M_{mathrm{ej}}=3.1pm0.1$M$_{odot}$, and a kinetic energy of $E_{mathrm{K}}=(8.2pm0.43)times10^{51}$ erg (statistical uncertainties only), consistent with previous GRB-associated SNe. When considering the ensemble population of GRB-associated SNe, we find no correlation between the mass of synthesized $^{56}$Ni and high-energy properties, despite clear predictions from numerical simulations that $M_{mathrm{Ni}}$ should correlate with the degree of asymmetry. On the other hand, $M_{mathrm{Ni}}$ clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.
Every GRB model where the progenitor is assumed to be a highly relativistic hadronic jet whose pions, muons and electron pair secondaries are feeding the gamma jets engine, necessarily (except for very fine-tuned cases) leads to a high average neutri no over photon radiant exposure (radiance), a ratio well above unity, though the present observed average IceCube neutrino radiance is at most comparable to the gamma in the GRB one. Therefore no hadronic GRB, fireball or hadronic thin precessing jet, escaping exploding star in tunneled or penetrarting beam, can fit the actual observations. A new model is shown here, based on a purely electronic progenitor jet, fed by neutrons (and relics) stripped from a neutron star (NS) by tidal forces of a black hole or NS companion, showering into a gamma jet. Such thin precessing spinning jets explain unsolved puzzles such as the existence of the X-ray precursor in many GRBs. The present pure electron jet model, disentangling gamma and (absent) neutrinos, explains naturally why there is no gamma GRB correlates with any simultaneous TeV IceCube astrophysical neutrinos. Rare unstable NS companion stages while feeding the jet may lead to an explosion simulating a SN event. Recent IceCube-160731A highest energy muon neutrino event with absent X-gamma traces confirms the present model expectations.
196 - A. A. Volnova 2016
We present optical observations of SN 2013dx, related to the Fermi burst GRB 130702A occurred at a redshift z = 0.145. It is the second-best sampled GRB-SN after SN~1998bw: the observational light curves contain more than 280 data points in uBgrRiz f ilters until 88 day after the burst, and the data were collected from our observational collaboration (Maidanak Observatory, Abastumani Observatory, Crimean Astrophysical Observatory, Mondy Observatory, National Observatory of Turkey, Observatorio del Roque de los Muchachos) and from the literature. We model numerically the multicolour light curves using the one-dimensional radiation hydrodynamical code STELLA, previously widely implemented for the modelling of typical non-GRB SNe. The best-fitted model has the following parameters: pre-supernova star mass M = 25 M_Sun, mass of a compact remnant M_CR = 6 M_Sun, total energy of the outburst E_oburst = 3.5 x 10^(52) erg, pre-supernova star radius R = 100 R_Sun, M_56Ni = 0.2 M_Sun which is totally mixed through the ejecta; M_O = 16.6 M_Sun, M_Si = 1.2 M_Sun, and M_Fe = 1.2 M_Sun, and the radiative efficiency of the SN is 0.1 per cent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا