ﻻ يوجد ملخص باللغة العربية
Toy models for quantum evolution in the presence of closed timelike curves (CTCs) have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived, as they require non-trivial interactions between the future and past which lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the CTC, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenbergs uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave-packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time-dilation suggests that OTCs provide a novel alternative to existing proposals for the behaviour of quantum systems under gravity.
Atom interferometry tests of universality of free fall based on the differential measurement of two different atomic species provide a useful complement to those based on macroscopic masses. However, when striving for the highest possible sensitiviti
The quantum multiparameter estimation is very different from the classical multiparameter estimation due to Heisenbergs uncertainty principle in quantum mechanics. When the optimal measurements for different parameters are incompatible, they cannot b
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einsteins field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxe
In general relativity, closed timelike curves can break causality with remarkable and unsettling consequences. At the classical level, they induce causal paradoxes disturbing enough to motivate conjectures that explicitly prevent their existence. At
We study the quantum-mechanical uncertainty relation originating from the successive measurement of two observables $hat{A}$ and $hat{B}$, with eigenvalues $a_n$ and $b_m$, respectively, performed on the same system. We use an extension of the von Ne