We perform an updated coupled-channel analysis of eta-meson production including all recent photoproduction data on the proton. The dip observed in the differential cross sections at c.m. energies W=1.68 GeV is explained by destructive interference between the $S_{11}(1535)$ and $S_{11}(1560)$ states. The effect from $P_{11}(1710)$ is found to be small but still important to reproduce the correct shape of the differential cross section. For the $pi^- N to eta N$ scattering we suggest a reaction mechanism in terms of the $S_{11}(1535)$, $S_{11}(1560)$, and $P_{11}(1710)$ states. Our conclusion on the importance of the $S_{11}(1535)$, $S_{11}(1560)$, and $P_{11}(1710)$ resonances in the eta-production reactions is in line with our previous results. No strong indication for a narrow state with a width of 15 MeV and the mass of 1680 MeV is found in the analysis. $eta N$ scattering length is extracted and discussed.