ترغب بنشر مسار تعليمي؟ اضغط هنا

An algebraic proof of the hyperplane property of the genus one GW-invariants of quintics

179   0   0.0 ( 0 )
 نشر من قبل Huai-liang Chang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Li-Zingers hyperplane theorem states that the genus one GW-invariants of the quintic threefold is the sum of its reduced genus one GW-invariants and 1/12 multiplies of its genus zero GW-invariants. We apply the Guffin-Sharpe-Wittens theory (GSW theory) to give an algebro-geometric proof of the hyperplane theorem, including separation of contributions and computation of 1/12.



قيم البحث

اقرأ أيضاً

The solutions to the Kadomtsev-Petviashvili equation that arise from a fixed complex algebraic curve are parametrized by a threefold in a weighted projective space, which we name after Boris Dubrovin. Current methods from nonlinear algebra are applie d to study parametrizations and defining ideals of Dubrovin threefolds. We highlight the dichotomy between transcendental representations and exact algebraic computations. Our main result on the algebraic side is a toric degeneration of the Dubrovin threefold into the product of the underlying canonical curve and a weighted projective plane.
In our previous work, we provided an algebraic proof of the Zingers comparison formula between genus one Gromov-Witten invariants and reduced invariants when the target space is a complete intersection of dimension two or three in a projective space. In this paper, we extend the result in any dimensions and for descendant invariants.
In this paper we prove that the etale sheafification of the functor arising from the quotient of an algebraic supergroup by a closed subsupergroup is representable by a smooth superscheme.
Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with a Frobenius structure. In this review, we recall the construction of such Hurwitz Frobenius manifolds as well as the correspondence between semisimple Frobenius manifolds and the topological recursion formalism. We then apply this correspondence to Hurwitz Frobenius manifolds by explaining that the corresponding primary invariants can be obtained as periods of multidifferentials globally defined on a compact Riemann surface by topological recursion. Finally, we use this construction to reply to the following question in a large class of cases: given a compact Riemann surface, what does the topological recursion compute?
140 - Boris Dubrovin , Di Yang 2017
We propose a conjectural explicit formula of generating series of a new type for Gromov--Witten invariants of $mathbb{P}^1$ of all degrees in full genera.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا