ﻻ يوجد ملخص باللغة العربية
In Martin Gardners October, 1976 Mathematical Games column in Scientific American, he posed the following problem: What is the smallest number of [queens] you can put on a board of side n such that no [queen] can be added without creating three in a row, a column, or a diagonal? We use the Combinatorial Nullstellensatz to prove that this number is at least n, except in the case when n is congruent to 3 modulo 4, in which case one less may suffice. A second, more elementary proof is also offered in the case that n is even.
Our main result is a sharp bound for the number of vertices in a minimal forbidden subgraph for the graphs having minimum rank at most 3 over the finite field of order 2. We also list all 62 such minimal forbidden subgraphs. We conclude by exploring
A emph{sign pattern (matrix)} is a matrix whose entries are from the set ${+, -, 0}$. The emph{minimum rank} (respectively, emph{rational minimum rank}) of a sign pattern matrix $cal A$ is the minimum of the ranks of the real (respectively, rational)
In the chapter Magic with a Matrix in emph{Hexaflexagons and Other Mathematical
In this paper, we study the rainbow ErdH{o}s-Rothschild problem with respect to 3-term arithmetic progressions. We obtain the asymptotic number of $r$-colorings of $[n]$ without rainbow 3-term arithmetic progressions, and we show that the typical col
The minimum forcing number of a graph $G$ is the smallest number of edges simultaneously contained in a unique perfect matching of $G$. Zhang, Ye and Shiu cite{HDW} showed that the minimum forcing number of any fullerene graph was bounded below by $3