ﻻ يوجد ملخص باللغة العربية
The max-flow and max-coflow problem on directed graphs is studied in the common generalization to regular spaces, i.e., to kernels or row spaces of totally unimodular matrices. Exhibiting a submodular structure of the family of paths within this model we generalize the Edmonds-Karp variant of the classical Ford-Fulkerson method and show that the number of augmentations is quadratically bounded if augmentations are chosen along shortest possible augmenting paths.
The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry break
Switches are operations which make local changes to the edges of a graph, usually with the aim of preserving the vertex degrees. We study a restricted set of switches, called triangle switches. Each triangle switch creates or deletes at least one tri
The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow networ
Szemeredis Regularity Lemma is a very useful tool of extremal combinatorics. Recently, several refinements of this seminal result were obtained for special, more structured classes of graphs. We survey these results in their rich combinatorial contex
We study optimal minimum degree conditions when an $n$-vertex graph $G$ contains an $r$-regular $r$-connected subgraph. We prove for $r$ fixed and $n$ large the condition to be $delta(G) ge frac{n+r-2}{2}$ when $nr equiv 0 pmod 2$. This answers a question of M.~Kriesell.