ﻻ يوجد ملخص باللغة العربية
Pairing in a population imbalanced Fermi system in a two-dimensional optical lattice is studied using Determinant Quantum Monte Carlo (DQMC) simulations and mean-field calculations. The approximation-free numerical results show a wide range of stability of the Fulde-Ferrell-Larkin-Ovshinnikov (FFLO) phase. Contrary to claims of fragility with increased dimensionality we find that this phase is stable across wide range of values for the polarization, temperature and interaction strength. Both homogeneous and harmonically trapped systems display pairing with finite center of mass momentum, with clear signatures either in momentum space or real space, which could be observed in cold atomic gases loaded in an optical lattice. We also use the harmonic level basis in the confined system and find that pairs can form between particles occupying different levels which can be seen as the analog of the finite center of mass momentum pairing in the translationally invariant case. Finally, we perform mean field calculations for the uniform and confined systems and show the results to be in good agreement with QMC. This leads to a simple picture of the different pairing mechanisms, depending on the filling and confining potential.
In this paper, we study the effect of population imbalance and its interplay with pairing strength and lattice effect in atomic Fermi gases in a one-dimensional optical lattice. We compute various phase diagrams as the system undergoes BCS-BEC crosso
Pairing of fermions is ubiquitous in nature and it is responsible for a large variety of fascinating phenomena like superconductivity, superfluidity of $^3$He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in strongly interacting
The ground-state properties of two-component repulsive Fermi gases in two dimensions are investigated by means of fixed-node diffusion Monte Carlo simulations. The energy per particle is determined as a function of the intercomponent interaction stre
We study the superfluid behavior of a population imbalanced ultracold atomic Fermi gases with a short range attractive interaction in a one-dimensional (1D) optical lattice, using a pairing fluctuation theory. We show that, besides widespread pseudog
We study population imbalanced Fermi mixtures under quasi-two-dimensional confinement at zero temperature. Using mean-field theory and the local-density approximation, we study the ground state configuration throughout the BEC-BCS crossover. We find