ﻻ يوجد ملخص باللغة العربية
We report high performance p-type field-effect transistors based on single layered (thickness, ~0.7 nm) WSe2 as the active channel with chemically doped source/drain contacts and high-{kappa} gate dielectrics. The top-gated monolayer transistors exhibit a high effective hole mobility of ~250 cm2/Vs, perfect subthreshold swing of ~60 mV/dec, and ION/IOFF of >10^6 at room temperature. Special attention is given to lowering the contact resistance for hole injection by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned NO2 chemisorption on WSe2. The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics.
We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional do
Recently, two-dimensional materials and in particular transition metal dichalcogenides (TMDs) were extensively studied because of their strong light-matter interaction and the remarkable optoelectronic response of their field-effect transistors (FETs
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including
This letter reports the impact of surface morphology on the carrier transport and RF performance of graphene FETs formed on epitaxial graphene films synthesized on SiC substrates. Such graphene exhibits long terrace structures with widths between 3-5
We report on p-WSe2/n-MoS2 heterojunction diodes fabricated both on glass and SiO2/p+-Si substrates. The electrostatic performance and stability of our diode were successfully improved toward ideal current-voltage (I-V) behavior by adopting the fluor